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Executive Summary 

Introduction/Purpose of Report 

Alceon Corporation has prepared this risk assessment to estimate Risl<-Based 
Cleanup Goals (RBCGs) for soils at residences near the 2800 8. Sacramento site in 
Chicago, Illinois. The Celotex Corporation, AlliedSignal, and the US Environmental 
Protection Agency Region V (US EPA) have had several discussions about draft risk 
assessments previously performed for this site. Although Celotex, AlliedSignal and US 
EPA have agreed on some exposure assumptions, they differ on others. Therefore, the 
purpose of this report is fourfold: 

1. To develop RBCGs for benzo{a)pyrene equivalents (BaPeq) determlnistically using 
exposure assumptions proposed by Celotex and AlliedSignal. 

2. To develop RBCGs for BaPeq as a distribution, using probabilistic methods. 

3. To present, side-by-side, the RBCGs proposed by Celotex, AlliedSignal, and the 
US EPA Region V to facilitate understanding of the differences. 

4. To present the outline of a health-protective, resource-efficient method for selecting 
residential properties for remediation should the need be demonstrated in the risk 
assessment. 

Site Location and Description 

The 2800 S. Sacramento site is located at 2800 South Sacramento Avenue in 
Chicago, Illinois. The site, including the 18-acre Celotex property and a 6-acre 
property to the south (which is currently being used for truck storage), is located in a 
mixed industrial, commercial, and residential area. Industrial buildings on the Celotex 
property were demolished and removed in 1993, except for some concrete slabs and 
foundation remnants, and a soil cover was then placed on the property. The entire site 
is surrounded by a chain-link fence. 

Site History 

Before 1912, the area was a farmstead. Allied Chemical Corporation operated a coal 
tar distillation and roofing plant at the facility beginning in 1912. The facility was sold to 
The Celotex Corporation through several transactions between 1967 and 1979. 

Regulatory Background 

The Illinois Environmental Protection Agency (lEPA) conducted various investigations 
at the 2800 S. Sacramento site from 1989 to 1993. In 1993, a US EPA Technical 
Assistance Team assessed the area, and in 1994, the US EPA issued a Special 
Notice of Liability and proposed Consent Order to Celotex and AlliedSignal. The 
proposed Consent Order required Celotex and AlliedSignal to perfomn sampling in 
residential areas in the vicinity of the site, prepare an Engineering Evaluation/ Cost 
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Analysis (EE/CA), and perform remediation as appropriate. AlliedSignal and Celotex 
signed an informal agreement with the US EPA in July 1995 under which the 
companies performed an investigation of contamination on residential properties 
within the study area, which was defined as the homes within a 2,500-ft radius from the 
site. 

Chemicals of Concern 

The carcinogenic polycyclic aromatic hydrocarbons (PAHs) selected as the study 
chemicals are expressed as BaPeq; these chemicals were selected because they 
dominate the calculations of RBCGs. PAHs generally adsorb strongly to soils, migrate 
slowly if at all in ground water, and do not readily volatilize into soil gas or the 
atmosphere. 

Methods Used in This Risk Assessment 

Alceon has used both deterministic and probabilistic calculations to estimate RBCGs 
for surface soils in the study area. The risk assessment is based on three pathways, 
incidental soil ingestion, inhalation of fugitive dust, and dermal contact with soil. The 
RBCG based on exposure assumptions proposed by Celotex and AlliedSignal for 
Reasonable Maximum Exposure (RME) was calculated first using detemninistic 
methods. Then the RBCG as a distribution was calculated using probabilistic methods. 
The last calculation was based on RME assumptions proposed by US EPA. The only 
difference between the companies' calculated RBCGs and the US EPA's is in their 
respective exposure assumptions. All the calculations use the same toxic potencies 
listed in the US EPA's Integrated Risk Infomnation System (IRIS) database. 

The two sets of deterministic exposure assumptions differ because the companies rely 
primarily on the latest US EPA "Guidelines for Exposure Assessment" to develop RME 
assumptions, using information appropriate for the study area; US EPA relies primarily 
on earlier Agency guidance to develop default RME assumptions using "bounding 
estimates." Bounding estimates may be regarded as maximally conservative 
estimates, which, given the compounding effect that occurs in the calculations, exceed 
reasonable estimates of actual exposure, even for the most exposed individuals. The 
assumptions used by the companies for both their deterministic and probabilistic risk 
assessments are intended to reflect a reasonable, conservative estimate of risk. 

As an example, the companies and US EPA agree that if the temperature is below 
freezing no children will play outdoors and have exposure to the soil. However, 
Celotex and AlliedSignal proposed that as the temperature rises, increasing 
percentages of children should be assumed to have exposure. US EPA assumed that 
if the temperature is above 32 degF, all children are exposed to the outdoor soil every 
day. 

RBCGs for Study Area 

Using detemninistic methods, Alceon estimated the RBCGs for surface soils at 
residential houses near the 2800 S. Sacramento site as follows: 
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Celotex and AlliedSignal's exposure assumptions: 27.5 mg/kg BaPeq 
US EPA's exposure assumptions: 1.93 mg/kg BaPeq 

Using probabilistic methods, Alceon calculated a distribution of BaPeq concentrations 
that represents the response goal, or cleanup target, for BaPeq concentration in soils. 
The exposure assumptions on which the calculations are based are similar to those 
used by Celotex and AlliedSignal for their deterministic risk assessment, this time 
expressed as distributions. The health-protective distribution of response goals is 
shown below: 

Percent i le 
minimum 

10th 
percentile 
20th 
percentile 
30th 
percentile 
40th 
percentile 
50th 
percentile 
60th 
percentile 
70th 
percentile 
80th 
percentile 
90th 
percentile 
95th 
percentile 
maximum 

= 

< 

< 

< 

< 

< 

< 

< 

< 

< 

< 

< 

Cleanup Goal 
0 mg/kg BaPeq 

6.4 mg/kg BaPeq 

9.5 mg/kg BaPeq 

12.8 mg/kg BaPeq 

16.4 mg/kg BaPeq 

20.8 mg/kg BaPeq 

26.1 mg/kg BaPeq 

33.3 mg/kg BaPeq 

43.6 mg/kg BaPeq 

58.2 mg/kg BaPeq 

72.7 mg/kg BaPeq 

99.9 mg/kg BaPeq 

Comment 
US EPA's 1.93 mg/kg cleanup goal lies near 
extreme end of health protective distribution 

Companies' 27.5 mg/kg goal is near mid-
range. 

Identifying Potential Candidates for Remediation 

Implementation of response goals in a residential neighborhood presents practical 
issues regarding health protection and feasibility. Part of the solution requires an 
understanding that individuals do not have all their exposure on a single property, but 
over many properties within their neighborhood, as described in US EPA guidance 
documents. A resulting "exposure point concentration" (EPC) can be calculated using 
spatial statistics based on activity-, time-, and distance-weighted factors. 

The cleanup target distribution listed above provides the basis for a remediation 
strategy that is health protective yet resource-efficient. The approach would work as 
follows: 
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1. Characterize through sampling and analysis the BaPeq concentrations at all the 
residences In the study area. A sampling program may be possible that yields more 
information than one in which every home is sampled, since measurements within 
a property are subject to variability. 

2. Using spatial statistics, estimate the distribution of EPCs. 

3. Compare the distribution of EPCs based on measured concentrations to the 
distribution for the RBCG. If any percentiles of the EPC distribution exceed the 
corresponding percentile of the RBCG distribution, remediate the surface soils at 
one or more of the most contaminated properties. 

4. If the distribution of EPCs based on the remaining concentrations still does not 
meet the distribution for the RBCG, remediate one or more of the more 
contaminated properties that remain. 

5. Continue remediation until the distribution of EPCs is smaller (i.e. has lower 
percentiles) than the RBCG distribution. 

This approach provides appropriate protection and minimizes neighborhood 
disruption, which is also a concem in the development of a remedial plan. 
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1. Introduction 

This human health risk assessment uses both deterministic and probabilistic 

calculations to estimate risk-based cleanup goals for surtace soils at residential 

properties near the industrial site in Chicago, IL. Alceon has completed this human 

health risk assessment report in accordance with the most current quantitative human 

health risk assessment methods of the US Environmental Protection Agency (US EPA, 

1992, 1993, 1995; US EPA, 1994, MC; Browner, 1995; US EPA, 1995, TG). 

The body of this report contains both deterministic and probabilistic calculations for 

"risk-based cleanup goals" (RBCGs) for the concentration of total carcinogenic 

polycyclic aromatic hydrocarbons (cPAHs) as benzo(a)pyrene (BaP) equivalents in 

surtace soils. First, we calculate the RBCG as a single concentration of BaPeq based 

on deterministic "Reasonable Maximum Exposure" (RME) exposure assumptions 

proposed by Celotex Corporation and AlliedSignal, Inc. These values follow the concept 

of "High End Exposure" (HEE) exposure assumptions (US EPA, 1992, Exposure). 

Second, we calculate the RBCG as a distribution of BaPeq based on distributions for 

exposure assumptions taken from the refereed literature and/or as developed for this 

project (US EPA, 1992, Exposure). Third, we calculate a single RBCG based on 

detemninistic default "Reasonable Maximum Exposure" (default RME) exposure 

assumptions proposed by US EPA Region V (US EPA, 1989, HHEM; US EPA, 1991, 

Default). 

The three sets of calculations differ only in their exposure assumptions; all the 

calculations use (i) the same toxic potencies listed US EPA's Integrated Risk 

Infonmation System (IRIS) database for benzo(a)pyrene (BaP) and (ii) the same (or 

more stringent) policy on target risk as adopted by US EPA's contractor, Ecology & 

Environment (E&E, 1995). While this report does not contain calculations using 

exposure assumptions based on the concept of Central Tendency (CT) exposure, we 

will provide them upon request. 

The two sets of detemninistic exposure assumptions in this report differ because Celotex 

and AlliedSignal rely primarily on the latest Agency "Guidelines for Exposure 

Assessment" published in the Federal Register (US EPA, 1992, Exposure) to develop 
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RME assumptions as point values using information appropriate for the neighbortnood in 
Chicago. In contrast. Region V relies primarily on earlier Agency guidance in interim 
final directives (especially, US EPA, 1991, Default; and US EPA, 1989, HHEM) to 
develop default RME assumptions as point values using "bounding estimates." The 
terms "high end" and "bounding estimate" are defined in the Federal Register (US EPA, 
1991, Exposure) and draw on recommendations and findings by the Agency's Science 
Advisory Board (US EPA, 1992, SAB). In short, Celotex and AlliedSignal develop 
assumptions that ~ in combination ~ are "a plausible estimate of the individual risk for 
those persons at the upper end of the risk distribution" (US EPA, 1992, Exposure, p. 
22921), while Region V develops assumptions that ~ in combination ~ create a 
"bounding estimate" of risk. 

Of course, none of the exposure variables in this report are tmly point values; they are 
really distributions expressing the range and probability of occurrence. Using full-
infomnation methods, the probabilistic exposure assessment in this report shows how to 
propagate the range and probability in the exposure variables using a powerful and 
general mathematical tool called Monte Cario simulation (Morgan & Henrion, 1990; 
Fishman, 1996). First used by mathematicians and physicists 50 years ago, Monte 
Cario simulations are now used routinely in operations research, weapons design for 
national defense, and troop deployment ~ not to mention mathematics, physics, 
chemistry, biology, oceanography, physiology, traffic engineering, bridge design, airport 
operation, investment banking, insurance, and other disciplines ~ to do calculations for 
which detemninistic methods give incorrect, partial, or misleading answers (Rubinstein, 
1981; Morgan, 1984). The National Academy of Science (NAS), the National Council on 
Radiation Protection (NCRP), the American Industrial Health Council (AIHC), US EPA's 
Headquarters, and the Agency's Science Advisory Board have all endorsed Monte Cario 
methods as a valid and powerful way to propagate distributions through dose equations 
and as a way to avoid excessively compounding conservatisms in health risk 
assessments (NAS, 1994; NCRP. 1996; AIHC, 1994; US EPA, 1992, Exposure; US 
EPA, 1992, SAB). Many, if not all, of the Agency's Regional Offices have now accepted 
one or more risk assessments for civilian or military projects using the Monte Cario 
methods used in this report (e.g., US EPA ,1994, MC; US EPA, 1995, TG). 

Following the standard practice in risk assessment as established by the National 
Academy of Sciences, the US EPA, and various state agencies, Alceon completed the 
core of this human health risk assessment in accordance with this simplified diagram: 

25 October 1996 2 Alceon ® 



A.169.03 2800 S. Sacramento Site 

Hazard 
Identification 

Dose-Response 
Assessment 

Exposure 
Assessment 

Risk 
Characterization 

Uncertainty 
Analysis 

In the first step. Hazard Identification (Section 4), Alceon identifies those chemicals 
present sufficient quantities or concentrations to pose a risk. The chemicals chosen for 
further study are called the Study Chemicals. The next two steps happen in parallel. In 
the Dose-Response Assessment (Section 5), Alceon reviews toxicological information 
about each Study Chemical to estimate adverse health effects associated with different 
doses. In the Exposure Assessment (Section 6), Alceon uses mathematical models 
along with assumptions or probability distributions to estimate the frequency, intensity, 
and duration of exposures that different groups of people may experience while living, 
worî ing, playing, or visiting the Study Area. In this step, we consider potential 
exposures through various routes. In the fourth step. Risk Characterization and 
Quantitative Uncertainty Analysis (Section 7), we estimate the probability and/or 
magnitude of adverse health effects, if any, from the exposures of different groups of 
people to the Study Chemicals. In the last step. Uncertainty Analyses (Section 8), we 
discuss the many sources of variability and/or uncertainty in the methods, models, and 
assumptions, and we discuss our approach to understanding or quantifying the 
magnitude of the conservative assumptions in the overall approach. 

The text concludes with a summary of the risk analyses (Section 9), a statement of 
limitations (Section 10), a list of abbreviations and acronyms (Section 11), and a list of 
references (Section 12). A map and all figures and tables appear following the text. 
Appendices present supporting infomnation. 

Throughout this report, we present concentrations in soils in milligrams per kilogram 
(mg/kg, equivalent to parts per million or ppm). 

Throughout this report we present references in the following fomn: name of author, year 
of publication, and, when we refer to more than one wori< by the same author in the 
same year, an abbreviation of the title which is unique to that reference. For example. 
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we refer to the US EPA's "Human Health Evaluation Manual" as "US EPA, 1990, 
HHEM." 

David E. Bumnaster, Ph.D., wrote this report with help from Andrew M. Wilson and 
Steven J. Luis. Louis Anthony "Tony" Cox, Jr., Ph.D., and Brian H. Magee, Ph.D., wrote 
several of the appendices. David Bumnaster visited the industrial property and 
surrounding neighborhood during the week of 17 April 1995. 

Alceon ® is a registered trademari< of Alceon Corporation, Cambridge, MA. 
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2. Overview of Probabilistic Methods 

This section provides an overview of probabilistic methods and their application to 

health risk assessment. 

2.1 Why Probabilistic Methods are Useful 

Traditional (deterministic) risk assessment methods select single point estimates 

(including many values >90th pr >95th percentile of the range) for each exposure 

variable, such as soil ingestion rate, exposure frequency, absorption, body weight, etc. 

A major drawback of this approach is that it does not include either (i) the variability 

found in nature, physiology, and behavior or (ii) the uncertainty inherent in our 

knowledge. Combining a set of point values ~ some typical, some conservative, and 

some very conservative ~ yields a point estimate of risk that falls at an unknown 

percentile of the full distribution of risk. The degree of health-protectlveness afforded by 

the point estimate of risk, while believed to be highly consen/atiye for reasons explained 

later in this report, is unknown and cannot be quantified by any detemninistic method 

(NCRP, 1996). 

Rather than select one point estimate from a range of values, a better approach is to 

use the entire range of possible values in the risk calculation (NCRP, 1996; Bumnaster & 

Anderson, 1994). This can be accomplished using probabilistic techniques, such as 

Monte Cario analysis, which uses distributions for input variables and generates 

distributions of outputs (Rubinstein, 1981; Morgan, 1984; Morgan & Henrion, 1990; 

Bumnaster & von Stackelberg, 1991). The resulting distribution provides a full 

characterization of risks or cleanup^ goals and con'esponding percentiles, which is 

considerably more useful and infonmative than a single value. The use of a probabilistic 

approach, rather than the traditional point estimate approach, is now recognized within 

the risk assessment community as more accurate and realistic (US EPA, 1992, RC; US 

EPA, 1992, Exposure; US EPA, 1994, MC; US EPA, 1994, MC; US EPA, 1995, TG; US 

EPA, 1995, GRC; Browner, 1995; US EPA, 1995, EFH2; MA DEP, 1993; Morgan & 

Henrion, 1990; NCRP, 1996). 

2.2 Strengths of Probabilistic Methods 

There are several reasons why probabilistic methods, such as Monte Cario analysis, are 

appropriate for assessing health risks (Thompson et al, 1992; Morgan & Henrion, 1990; 
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US EPA, 1992, RC; US EPA, 1995, GRC; US EPA ,1994, MC; US EPA, 1995, TG; 
Harris & Burmaster, 1992; Burmaster & Harris, 1993). 

First, the standard definition of risk (see, e.g., Webster's Dictionary) starts: "risk is the 
chance [meaning, probability] of hamn...." At its root, risk assessment is the assessment 
of the probability of an adverse outcome. However, in the past, deterministic risk 
assessors routinely eliminated all aspects of probability in the deterministic methods 
published in its standard Supertund guidance manuals (US EPA, 1989,1991). 
Probabilistic methods reintroduce the most basic notion of risk assessment - probability 
~ Into the practice of risk assessment. 

Second, probabilistic methods quantify two very basic and important concepts ~ 
variability (V) and uncertainty (U) ~ at the same time as they estimate risks. In this 
report, we adopt the most common definitions for the terms. Variability represents 
heterogeneity or diversity in a well-characterized population, usually not reducible 
through further measurement or study. Uncertainty represents ignorance - or lack of 
perfect infomnation ~ about a pooriy-characterized phenomenon or model, sometimes 
reducible through further measurement or study. With probabilistic methods, risk 
assessors can quantify and understand the importance of V and U in a study. 

Third, probabilistic methods are "full information" methods. In a deterministic risk 
assessment, the risk assessor destroys information about a site and the behavior of 
people to select a single number purported to represent the entire phenomenon. For 
example, in a detemninistic risk assessment, the analyst discards most of the 
information known about children's body weights and instead uses a single value, say, 
20 kg to represent the range of body weights in a particular age group. In a probabilistic 
risk assessment, the analyst does not destroy any information about a phenomenon. In 
a probabilistic risk assessment, the analyst does not destroy important correlations and 
dependencies among the variables. Thus, a probabilistic risk assessor uses the full 
range of values in an appropriate statistical framewori<. 

Fourth, the need to include variability and uncertainty in a risk assessment is inherently 
understandable and acceptable to members of the public. The public understands that 
all people do not weigh the same or drink the same amount of water every day. 
Furthemnore, it makes common sense to the lay public to incorporate this variability into 
an analysis, rather than assume that all humans have identical physiology and 
behaviors. While lay people do not understand all the mathematics inherent in 
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probabilistic methods, they quickly embrace the ideas inherent in variability and 
uncertainty. 

2.3 Mechanics of Probabilistic Risk Assessment 

In a traditional or deterministic risk assessment, the risk assessor builds a spreadsheet 
to estimate the risk through numerical computation. To simplify the discussion, consider 
a fomnula of the general form of Eqn 1: 

Risk = f(X,Y,Z) Eqnl 

where Risk is a function of only three input variables, X, Y, and Z. In a detemninistic risk 
assessment, the analyst picks a single number for X, a single number for Y, and a 
single number for Z. After the risk assessor inputs the function f( X, Y, Z), the 
spreadsheet calculates the single value for Risk in Eqn 1. 

In a probabilistic risk assessment, the basic risk equation remains the same: 

Ri§k = f (X,Y,Z) Eqn2 

but, each of the input variables in Eqn 2 now is now underscored to indicate that each is 
a random variable, i.e., a variable that can take different values within a range of values 
as described by a probability distribution. In a probabilistic risk assessment, the analyst 
takes not just a single number for each input but instead develops a whole distribution of 
values that represent the variability and/or the uncertainty in the input. After the risk 
assessor inputs the function f( X, Y, Z), the spreadsheet ~ along with auxiliary software 
~ computes a full distribution of Risk as follows. In a first iteration, the computer picks a 
random value from each of the three input distributions and computes a single value of 
Risk. In a second iteration, the computer picks a different random value from each of the 
three input distributions and computes a different single value of Risk. As the computer 
perfomns additional iterations, the software stores each of the intemnediate results and 
displays them as a histogram of Risk. After many iterations (often 10,000 or more 
iterations), the histogram of Risk values converges to the distribution of Risk sought by 
the analyst. 

In this analysis, we used commercially available software for the calculations: 
Microsoft's Excel V4.0 on the Macintosh as the spreadsheet and Decisioneering's 
Crystal Ball V2.0 as the Monte Cario simulation program (Decisioneering, 1992). We 
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used 20,000 iterations for all loops in the final calculations, a number large enough to 
demonstrate solid numerical stability. 

2.4 Commonly Used Probability Distributions 

This section provides an overview of the continuous distributions used in the 
probabilistic sections of this risk assessment. These and other distributions are 
discussed in many text books; the presentation and discussion in "Statistical 
Distributions, Second Edition" (Evans, Hastings, & Peacock, 1993) is particulariy helpful. 

2.4.1 Background Infomnation 

In full-infomnation risk assessments, analysts commonly use continuous distributions (as 
opposed to discrete distributions) to represent exposure variables. In mathematics and 
statistics, there are many different but equivalent ways to express the same probability 
distribution in graphs or algebra, including but not limited to (i) probability density 
functions (PDFs), (ii) cumulative distribution functions (CDFs), and (iii) lists of 
percentiles (a different way to specify a CDF). Infomnation presented in one fomn may 
be converted into another fomn; for example, a CDF is the integral of a PDF. To make 
this report as accessible as possible, we often use algebraic and graphical PDFs, but 
the same infomnation can be equally well presented using CDFs and tables of various 
percentiles. 

Statisticians often categorize probability distributions into families based on shape or 
mathematical properties. For example, nomnal distributions always follow the familiar 
bell-shaped curve when represented as PDFs or a less-familiar symmetric sigmoid 
curves when presented as CDFs. Some families of distributions, e.g., nomnal 
distributions, have been studied extensively because they occur throughout science and 
engineering. These common distributions are called parametric distributions because 
they can be completely specified by one, two, or a small number of parameters. For 
example, a nomnal distribution can be completely specified by two parameters, usually 
chosen as the mean and the standard deviation. Other parametric distributions include 
the uniform, triangular, lognormal, beta, and exponential distributions (Evans, Hastings 
& Peacock, 1993; Mood et al, 1974; Benjamin & Comell, 1970; Parzen, 1960). 

Nonparametric distributions also arise in practice for any one of several possible 
reasons. First, some situations require the development of a nonparametric distribution, 
i.e., a probability distribution not found in one of the common families (Green & 
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Silverman, 1994; Tarter & Lock, 1993). Such a distribution is also called a custom or 
empirical distribution. Second, sums and products of parametric distributions are rarely 
parametric distributions. For example, we compute products and sums of distributions of 
many random variables in this report. While these products and sums are valid 
probability distributions, they do not come from a parametric family, so we call them 
nonparametric, empirical, or custom distributions. 

Every distribution, whether parametric or nonparametric, can be described by certain 
summary statistics, including the minimum and the maximum value. Most people are 
familiar with the two most common summary statistics ~ the arithmetic mean (also 
called the average or expected value) and the standard deviation. In this report, we also 
use the median or 50th percentile, the value that occurs midway in a distribution, with 
half the values falling below the median and half falling above the median. In other parts 
of the report, we also use other percentiles, e.g., the 20th percentile, the 75th percentile, 
and/or the 95th percentile of a distribution. 

2.4.2 Parametric Distributions Used in this Report 

Unifomn Distribution 

Also called the rectangular distribution, the unifomn distribution is used to represent a 
random variable that is equally likely to take any value between a minimum and a 
maximum (Evans, Hastings & Peacock, 1993). The unifomn distribution is illustrated in 
Figure 1. A unifomn distribution (with two parameters representing the minimum and the 
maximum) can be written as: 

Unifomn(min, max) = UnifonTi(2,6) Eqn 3 

This random variiable is equally likely to take any value between the minimum of 2 and 
the maximum of 6. In this example, the random variable has a mean value of 4. 

Risk assessors commonly use a unifomn distribution to represent a random variable 
chosen on the basis of professional judgment when only the minimum and maximum 
are known. The distribution may represent variability, uncertainty, or a combination of 
both. 
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Triangular Distribution 

The triangular distribution is also used to represent a random variable that takes values 
between a minimum value and a maximum value. However, with the triangular 
distribution, the values taken are not equally probable within the range (Evans, Hastings 
& Peacock, 1993). Instead, some central values are more likely than extreme values, 
with the overall relative frequency governed by a peaked distribution formed by two 
straight lines. Figure 1 illustrates the triangular distribution. A triangular distribution (with 
three parameters) can be written as: 

Triangular(min, mode, max) = Triangular(2,3,7) Eqn 4 

This random variable has a minimum of 2, a mode of 3, and a maximum of 7. The 
mode, also called the peak, is the single most likely value for the random variable. In 
this example, the random variable also has a mean of 4. 

Risk assessors commonly use a triangular distribution to represent a random variable 
chosen on the basis of professional judgment when the probability has a single mode 
between a known minimum and maximum. The distribution may represent variability, 
uncertainty, or a combination of both. 

Nonnal Distribution 

The nomnal distribution is used to represent a random variable without a fixed minimum 
or a fixed maximum. Typically, normal distributions arise from "additive" processes 
(Evans, Hastings & Peacock, 1993). Normal distributions also arise naturally from 
repeatedly computing the averages of independent samples drawn from any type of 
distribution, not just a normal distribution. Figure 1 illustrates the PDF and the 
cumulative distribution function (CDF) for the normal distribution. A nomnal distribution 
(with two parameters) can be written as: 

Normal(mu, sIgma) = Nomial(2,1) Eqn 5 

In this example, the nomnal random variable has a mean of 2 and a standard deviation 
of 1, meaning that approximately 68 percent of the area under the curve of the PDF 
occurs within the interval from (mu - one standard deviation) to (mu + one standard 
deviation). All nomnal distributions are symmetrical in shape - it is equally likely for a 
value to fall above the mean of the distribution as below the mean. 
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LoaNomnal Distribution 

The lognormal distribution is used to represent a random variable with a fixed minimum 

of zero but with no fixed maximum. Thus, a lognormal random variable describes a 

positive random variable. Typically, lognomnal distributions arise from "multiplicative" or 

"dilution" processes such as the dispersion of a contaminant in water or soil. Lognomnal 

distributions occur frequently throughout physics, chemistry, biology, and toxicology. 

Figure 1 illustrates the PDF and the CDF for the lognormal distribution. A lognomnal 

distribution (with two parameters) can be written as (Evans, Hastings & Peacock, 1993; 

Aitchison & Brown, 1957; Crow & Shimizu, 1988): 

LogNormal(mu, sigma) = exp[Nomnal(mu, sigma)] Eqn 6 

= exp[Normal(2,1)] 

In this example, the natural logarithm of the random variable has a mean of 2 and a 

standard deviation of 1. All lognomnal distributions are positive and asymmetric - they 

never have negative values and they always have a (long) tail to the right. Risk 

assessors use lognonnal distributions to describe many different types of random 

variables, including exposure point concentrations (Ott, 1995; Ott, 1990), body weights, 

skin areas, dietary intakes, breathing rates, and many other variables (US EPA, 1995, 

EFH2; AIHC, 1994; Anderson et al. 1984). 

Exponential Distribution 

The exponential distribution Is commonly used to represent a random variable for the 

"time to failure" for a particular phenomenon, always a positive quantity. For example, 

exponential distributions are excellent models for the length of time that a new 

fluorescent tube will light before failing. Exponential distributions always have one 

parameter (often called lambdia) that specifies the shape and location of the distribution 

and a long tail to the right (Evans, Hastings & Peacock, 1993). Figure 1 shows an 

exponential distribution: 

Exponential(lambda) = Exponential(IO) Eqn 7 

For an exponential distribution, the mean = 1 / lambda. Recently, investigators have 

found that exponential distributions are excellent models for the length of time that a 
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person lives in a particular house and the length of time that a person keeps a certain 
job (Israeli & Nelson, 1992; Shaw & Burmaster, 1995). 

Beta Distribution 

The two-parameter beta distribution is used to represent a positive random variable with 
a fixed minimum of zero and a fixed maximum of one. Beta distributions are often used 
in risk assessments. For example, the fraction of a chemical absorbed in the human gut 
ranges between zero and one. Figure 1 shows the PDF for a particular beta distribution. 
A beta distribution has two.parameters (often called a and b) that specify the shape and 
location of the distribution. A beta distribution can be written as: 

Beta(a, b) = Beta(2,4) Eqn 8 

In this example, the mean = a / (a + b) = 1/3. If the two parameters are equal (a = b), 
then the beta distribution is symmetric. Otherwise, the distribution may be skewed to the 
left or the right depending on the values of the two parameters. 

With two additional parameters, called c and d, the analyst can scale and translate a 
two-parameter beta distribution into a four-parameter beta distribution as follows: 

Beta4(a, b, c, d) = Beta(a, b) • c + d Eqn 9 

This new random variable has a minimum value of d and a maximum value of (c+d). 

25 October 1996 12 Alceon ® 



A. 169.03 2800 S. Sacramento Site 

3. Description and Background of the Site 

The Streamlined Human Health Risk Evaluation (Ecology & Environment, 1995, Report) 

provides a description and history of the Celotex area. 

3.1 Description of the Site 

The industrial property is located at 2800 South Sacramento Avenue in Chicago, Illinois. 

The map (from E&E, 1995, Report) shows the location of the property. The Site, 

including the 18-acre industrial property and a 6-acre property to the south (which is 

currently used for storage of trucks), is located in a mixed industrial, commercial, and 

residential area. It is bounded on the east by the Cook County Correctional Facility, on 

the south by the Chicago Fire Department, Bureau of Support Services, and Fariey 

Candy Company, and on the north and west by residences and by the Atchison, 

Topeka, and Santa Fe Railroad Lines. 

Industrial buildings on the industrial property were demolished and removed in 1993. 

Some concrete slabs and remnants of foundations remain. Following demolition, a soil 

cover was placed on the property. The property is surrounded by a chain-link fence. 

3.2 History of the Property 

According to file infomnation, the area was a famnstead before 1912. Little is known 

about the use of the area before this time. 

Asphalt roofing products were manufactured at the property from 1912 until 1982. 

Information provided by Celotex and AlliedSignal indicates that the Barrett Company 

and Allied Chemical Corporation operated a coal tar distillation and roofing plant at the 

facility from 1912 until 1970. The Barrett Division of Allied Chemical Corporation was 

purchased by Jim Walter Corporation in 1967 and a portion of the property was 

transferred to the Celotex Corporation (Celotex), a subsidiary of the Jim Walter 

Corporation. Allied Chemical Corporation sold four additional parcels of the facility's 

property to Celotex between 1972 and 1975. In 1975, Allied Chemical Corporation sold 

the tar plant property to Service Welding and Cleaning Company (Service Welding) and 

subsequently leased a building from Service Welding to operate a sealer plant. Allied 

Chemical Corporation closed the sealer plant in 1977 and in 1980 Celotex bought all 

property that was purchased by Service Welding. 
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The Illinois Environmental Protection Agency (lEPA) completed a PA of the property in 
1989. Subsequent field investigations included an SSI in 1991, an ESI in 1992, and an 
LSI in 1993. In addition to these studies, an US EPA Technical Assistance Team 
assessed the area in 1993. 

On 8 November 1994, US EPA issued a Special Notice of Liability and 104(e) 
Information Request Letter to Celotex and AlliedSignal. The special notice letter 
requested that the PRPs sample to determine the extent and degree of PAH 
contamination in the vicinity of the industrial property, prepare an EE/CA to address 
contamination in residential areas that exceeded cleanup goals, and initiate 
investigation of the area. The PRPs submitted a Support Sampling Plan (SSP) (ERM, 
1995) to US EPA to investigate the extent of site-related contamination within 2,500 feet 
of the fenced property. 

3.3 Previous Calculations of Risk-Based Cleanup Goals 

3.3.1 Ecology & Environment, October 1995 

In a report dated October, 1995, Ecology & Environment (E&E) estimated point values 
for Risk-Based Cleanup Goals (RBCGs) for benzo(a)pyrene equivalents (BaPeq) in 
surface soils at residences near the industrial property (E&E, 1995, Report). We 
summarize their methods and findings here. 

E&E selected PAHs based on "evaluation of analytical information provided by I EPA, 
and consideration of potential off-site migration pathways of contaminants as a result of 
prior site operations." Following common practice, E&E segregated the PAHs into two 
groups: carcinogenic and noncarcinogenic PAHs. To simplify calculations, the 
carcinogenic PAHs were converted to benzo(a)pyrene (BaP) equivalents (using the 
relative potencies reported in US EPA, 1993, PAHs). E&E selected pyrene to represent 
the noncarcinogenic PAHs due to its high noncarcinogenic toxicity. 

Based on a preliminary characterization of the exposure setting and local population, 
E&E identified one exposure scenario, that of residents living in the vicinity of the 
industrial property. Three pathways were identified: incidental soil ingestion, inhalation 
of fugitive dust, and dermal contact with soil. E&E made numerous conservative 
assumptions to characterize each of these pathways for two exposure cases: the default 
reasonable maximum exposure (default RME) and central tendency (CT) exposure. 
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E&E did not estimate cancer risks due to dermal exposure because US EPA has not 
published toxicity values for demnal exposure. Therefore, only ingestion and inhalation 
were evaluated for cancer risk. 

In accordance with the National Contingency Plan (US EPA, 1990, NCP), E&E selected 
10"4 as the target Incremental Lifetime Cancer Risk (ILCR) and 1 as the target Hazard 
Index (HI) for carcinogenic and noncarcinogenic PAHs, respectively. E&E then 
estimated point values for the RBCGs for carcinogenic and noncarcinogenic PAHs in 
soils at residential properties. 

There are at least two important conclusions to be drawn from the results of E&E's 
analysis. First, E&E showed that the carcinogenic PAHs are approximately two orders of 
magnitude (a factor of -100) more important than are the noncarcinogenic PAHs in 
estimating cleanup targets. We agree with E&E's result on this point. From E&E's result, 
Alceon concludes that it is only necessary to consider carcinogenic PAHs when 
deciding the proper risk management strategy for the residences near the industrial 
property. 

Second, E&E argued that the dominant pathway for exposure is the pathway for 
incidental ingestion of soil. According to the formulas and input values chosen by E&E, 
the second pathway ~ the inhalation of fugitive dust ~ is less important than the soil 
ingestion pathway for both carcinogenic and noncarcinogenic PAHs by more than four 
orders of magnitude (a factor greater than 10,000). In addition, citing guidance from the 
US EPA, E&E did not quantify any risks from exposures via demnal exposure. 

With these methods and assumptions, E&E estimated these deterministic point values 
for RBCGs for surface soils at residences near the industrial property: (i) 8.6 mg/kg 
BaPeq based on default RME exposure assumptions, and (ii) 72 mg/kg BaPeq based 
on CT exposure assumptions. 

3.3.2 Alceon Corporation, January 1996 

In a report dated January 1996, Alceon estimated deterministic point values for RBCGs 
for BaPeq in surface soils at residences near the industrial property (Alceon, 1996, 
DRA). We summarize our methods and findings here. 

Based on E&E's eariier report, and based on our own calculations, Alceon excluded the 
fugitive dust pathway and the dermal contact pathway from further consideration and 
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focused exclusively on the soil ingestion pathway in the risk assessment. Following the 
precedent used in the E&E report, Alceon used lO"'* as the target for incremental 
lifetime cancer risk. 

With these methods and assumptions, Alceon estimated 29.5 mg/kg BaPeq as the 
deterministic point value as the RBCG for surface soils at residences near the industrial 
property. 

3.3.3 Alceon Corporation, February 1996 

In a report dated February 1996, Alceon estimated a probability distribution for the 
RBCG for BaPeq in soils at residences near the industrial property (Alceon, 1996, PRA). 
We summarize our methods and findings here. 

Based on E&E's eariier report, and based on Alceon's eariier deterministic report, 
Alceon completed a risk assessment using probability distributions for exposure 
variables and a fixed value for the toxic potency of BaP. Following the precedent from 
Ecology & Environment, and paralleling our eariier deterministic report, we included only 
exposures via inadvertent ingestion, and we excluded exposures via fugitive dust and 
demnal contact. Again, using the same target risk as US EPA's contractor, we defined 
an acceptable distribution of risk as having, simultaneously, a 95th percentile of risk 
equal to or less than 10*^ risk (this parallels US EPA's policy on RME risk), and a 50th 
percentile (or median) of risk equal to or less than 10'^ risk (this parallels US EPA's 
policy on CT risk). Together, these two simultaneous constraints create a risk 
management policy that is more stringent than the one used by Ecology & Environment. 

With these methods and assumptions, Alceon calculated the RBCG for surface soils at 
residences near the industrial property as a (truncated) lognomnal distribution, 
summarized as follows: First, no single measurement of BaPeq may exceed 100 mg/kg 
at any location. Second, the set of all Exposure Point Concentrations of BaPeq must 
simultaneously meet all of these constraints developed from the tmncated lognormal 
distribution: 

minimum = zero mg/kg BaPeq 

10th percentile < 6.3 mg/kg BaPeq 

20th percentile < 9.4 mg/kg BaPeq 
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30th percentile < 12.8 mg/kg BaPeq 

40th percentile < 16.1 mg/kg BaPeq 

50th percentile < 20.7 mg/kg BaPeq 

60th percentile < 26.1 mg/kg BaPeq 

70th percentile < 33.5 mg/kg BaPeq 

80th percentile < 43.5 mg/kg BaPeq 

90th percentile < 59.3 mg/kg BaPeq 

95th percentile < 73.7 mg/kg BaPeq 

maximum < 99.9 mg/kg BaPeq 

These constraints on the distribution of concentrations of BaP equivalents create a 
distribution of EPCs that meets the definition of an acceptable distribution of risk. 

3.4 Purpose of this Report 

Since February 1996, Celotex, AlliedSignal, and US EPA Region V have had several 
discussions about the three risk assessment reports just summarized. In these 
discussions, US EPA Region V has said that it no longer considers it appropriate for the 
risk assessment to exclude exposures via demnal contact. Thus, the first purpose of this 
new report is to include and quantify exposures via the demnal pathway. 

In addition, through the discussions, Celotex, AlliedSignal, and Region V have agreed 
on point values for some exposure variables but continue to differ on other exposure 
variables. Thus, the second purpose of this report is to develop deterministic RBCGs for 
BaPeq based on the detemninistic assumptions now proposed by Celotex and 
AlliedSignal and those now proposed by US EPA Region V. 

The third purpose of this report is to develop the RBCG for BaPeq as a distribution 
using full infomnation methods, i.e., probabilistic methods. Since none of the exposure 
variables are truly point values, the probabilistic calculations put the risk assessment on 
a sound theoretical basis by treating the key exposure variables as the distributions that 
they truly are. Monte Cario simulations propagate the variability in the input variables in 
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a mathematically correct way, and the simulations include the numerically important 
correlations (Smith et al, 1992) but avoid the excessive compounding of conservatisms 
inherent in default RME methods (Harris & Burmaster, 1992; Burmaster & Harris, 1993). 

Finally, for convenience, appendices to this document compile all the background 
materials submitted by Celotex and AlliedSignal and its contractors under one cover. 
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4. Hazard Identification 

4.1 Definition of the Study Area 

We define the Study Area to be the residential neighbortnood(s) in the vicinity of the 
industrial property. Residences in this area are primarily located to the north and west of 
the property. As in E&E's report, we limit the population of potentially exposed 
individuals to those residents living within the 2,500-ft sampling radius defined by ERM 
(1995, DSR). Since the industrial property itself is not residential, the exposure 
scenarios considered here are not applicable and an additional assessment would be 
required to detemnine appropriate RBCGs for the industrial property itself. 

In Appendix A, we present the measurements of the concentrations of carcinogenic 
polycyclic aromatic hydrocarbons (cPAHs) ~ as expressed in temns of benzo(a)pyrene 
equivalents (BaPeq, in mg/kg, equivalent to ppm) ~ for 49 soil samples representing 
"urisan background concentrations" for this project. As explained further below, the 49 
measurements range from 0.7 mg/kg BaPeq for a sample in Douglas Pari< to 26.0 
mg/kg BaPeq for a sample some 1,500 to 2,500 ft north of the industrial property. Taken 
together, these 49 samples provide a statistical population of measurements against 
which other populations of measurements may be compared using nonparametric tests 
such as the Wilcoxon Rank Sum test or the Kolmogorov-Smimov test. 

Using powerful statistical methods, Louis Anthony Cox, Jr. has demonstrated that the 
spatial pattem of the concentrations in these 49 samples are unrelated ~ with 95 
percent confidence ~ to the industrial property (see Appendix B). 

As shown by the lognormal probability plot in Appendix A, these 49 samples are well 
described by this lognomnal distribution (Gilbert, 1987; Draper & Smith, 1981): 

ln[BaPeq] = Normal(|i, o) 

which is equivalent to 

[BaPeq] = exp[ Normal(^, a) ] 

= exp[ Normal( 1.01, 0.61) ] in mg/kg 
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This lognormal distribution for BaPeq in background soils has an arithmetic mean equal 
to -3.31 mg/kg and a 95̂ *̂  percentile equal to -7.49 mg/kg. 

It is essential to treat this lognomnal distribution as a full mathematical object because it 
is the object of interest. While the distribution presents the full infomnation available in 
the background soil samples, any single value drawn from the distribution - or any 
single statistic summarizing the distribution - necessarily destroys infomnation present 
in the 49 laboratory measurements. Thus, when comparing the soil concentrations in a 
"treatment" area to the soil concentrations in a "background" area, it is essential to 
compare the full distribution of measurements for the "treatment" area to the full 
distribution of measurements for the "background" area before drawing any inferences 
about the similarities or differences between the two areas (e.g.. Mood et al., 1974). 

To put these numbers in context, we present information from two authoritative studies 
of uriDan background concentrations of PAHs in surface soils. 

Bradley et al. (1994) report the results from the measurement of 60 surficial, 
nonindustrial soil samples from three New England cities. These 60 samples 
had a range from 0.26 mg/kg BaPeq to 21.31 mg/kg BaPeq, with an 
arithmetic mean concentration of 2.44 mg/kg BaPeq and a 95-percent UCL on 
the arithmetic mean of 3.32 mg/kg BaPeq. 

The US Agency for Toxic Substances and Disease Registry (ATSDR, 1990) 
reports the results from hundreds of measurements of background 
concentrations of PAHs in urisan soils. In particular, applying US EPA's 
provisional guidance to ATSDR's values reported in Table 5-5 (page 148), we 
find that concentrations of BaPeq range from < 1 mg/kg to -19 mg/kg in urban 
soils. 

These two authoritative sources on urban background soil concentrations demonstrate 
that range and distribution of the site-specific concentrations of BaPeq in the 49 
background surface soil samples analyzed in Appendix A fit well within the typical range 
and distribution of BaPeq measurements in cities across the country. 

4.2 Selection of the Study Chemicals 

As discussed eariier, we select cPAHs as the Study Chemicals (Table 1) since they 
dominate the calculations of RBCGs (E&E, 1995, Report). 
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4.3 Physical-Chemical Properties of the Study Chemicals 

Table 2 summarizes the key physical and chemical properties of the Study Chemicals. 
We tabulated these values from databases compiled by the US EPA (US EPA, 1988, 
and US EPA, 1994, HSDB). Taken together, the physical-chemical properties in this 
table describe the tendencies of a particular compound to move and/or accumulate in 
various environmental media (Mackay et al., 1992; Verschueren, 1983). 

A review of the physical and chemical properties of the PAHs in the Study Area reveals 
that the PAHs have: (i) moderate to high molecular weights, (ii) low water solubilities, 
(iii) low vapor pressures, (iv) low Henry's Law constants, (v) moderate to high water-
carbon partition coefficients, and (vi) moderate to high octanol-water partition 
coefficients. These properties show that the PAHs included as Study Chemicals for this 
risk assessment generally adsorb strongly to soils, migrate slowly if at all in ground 
water, and do not readily volatilize into soil gas or the atmosphere. 
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5. Dose-Response Assessment 

Table 3 summarizes the toxicological properties of the Study Chemicals for use in 

estimating human cancer risks. A compound may have values for carcinogenic 

responses from exposures via ingestion and/or inhalation. All toxicity values in this 

report are based on lifetime exposures. 

The toxicity profile for benzo(a)pyrene supporting Table 3 was downloaded in November 

1995 from the US EPA's Integrated Risk Infonnation System (IRIS) database (US EPA, 

1995, IRIS). See the full profile in Appendix C. 

The toxicity values in Table 3 are the most current and authoritative available from the 

US EPA. Specifically: 

• if available, the table presents values from US EPA's IRIS database (US EPA, 
1995). 

• if the IRIS database does not include a particular value, the table presents a 
value from the US EPA's most recently published Health Effects Assessment 
Summary Tables (US EPA, 1994, HEAST), if available. 

• in general, if toxicity values are not available from any of these sources, 
blanks appear in the table. 

The US EPA frequently revises the toxicity values it publishes in the IRIS database and 

the quarterly HEAST. The toxicity values in this risk assessment are current as of the 

dates shown on the IRIS profiles in Appendix C, and as of the version of HEAST cited in 

the references. 

Published toxicity values may be based on either an exposure dose or an absorbed 

dose. In estimating health effects, the dose and toxicity value must be concordant ~ that 

is, a risk estimate should use either an exposure dose and a toxicity value based on 

exposure dose or an absorbed dose and a toxicity value based on absori^ed dose. 

According to US EPA (US EPA, 1989, HHEM), most of the US EPA's published 

Reference Doses (RfDs) and some Cancer Slope Factors (CSFs) are based on 

exposure dose. 
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5.1 Carcinogenic Toxicity of the Study Chemicals 

For each of the carcinogenic PAHs reported in the Study Area, Table 3 presents both 
ingestion and inhalation Cancer Slope Factors (CSFs) measured in units of risk per unit 
dose: inverse milligram of chemical per kilogram of body weight per day or 
(mg/(kg«day))-''. The larger the CSF, the more potent the compound. The US EPA 
estimates the CSFs based on the assumption that a nonzero dose causes a nonzero 
probability of carcinogenic response; that is, the CSF values are generally based on a 
linear nonthreshold dose-response model. The US EPA has not developed CSFs for 
demnal exposures. 

When the US EPA assesses a compound for human carcinogenicity, the Agency gives 
a Weight-of-Evidence rating that reflects its confidence in the evidence of 
carcinogenicity. (See Table 4; US EPA, 1986, FR). The US EPA's Weight-of-Evidence 
categories generally parallel those developed by the International Agency for Research 
on Cancer (lARC). As described in the documentation supporting the IRIS database 
(US EPA, 1994-5), chemicals that give rise to cancer and/or gene mutations are 
generally classified by US EPA as follows: (i) Group A: Human Carcinogen; (ii) Group 
B1: Probable Human Carcinogen; limited human data; (iii) Group B2: Probable Human 
Carcinogen; sufficient evidence in animals and limited or no evidence in humans; and 
(iv) Group C: Possible Human Carcinogen. If insufficient tests for carcinogenesis or 
mutagenesis are available, the US EPA generally places the chemical in Group D: Not 
Classifiable as to Human Carcinogenicity. A fifth category. Group E: Evidence of 
NonCarcinogenicity in Humans, is rarely used. The US EPA usually publishes CSFs for 
chemicals classified as Group A, B1, B2, or C. Finally, the US EPA has recently 
proposed changes in the regulation of carcinogens, and the new "Cancer Guidelines" 
are still open to pubic comment (US EPA, 1996, CG). 

Unless human data from occupational exposures are available, the published CSF is 
derived using a statistical model applied to the results of animal experiments, and, 
unless othen/vise indicated, the published CSF for humans is extrapolated from the 95-
percent upper confidence limit on the linear term of the linearized multistage model fit to 
the animal data. By assumption and methodology, CSFs estimated this way are 
uncertain values, and most experts believe that they are generally conservative (i.e., 
they tend to overestimate risk). 
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Relative potencies for the carcinogenic PAHs are listed in Table 5. Following standard 
risk assessment practice to streamline calculations, we consider health risks due to BaP 
equivalent concentrations. Benzo(a)pyrene equivalents for a contaminated medium are 
calculated as a weighted sum by multiplying concentrations of nonbenzo(a)pyrene 
PAHs by the relative potencies listed in Table 5. The resulting weighted concentrations 
are then summed together with the benzo(a)pyrene concentration to yield a 
benzo(a)pyrene equivalent concentration for the medium (US EPA, 1993, PAHs; see 
also US EPA, 1986, Mixtures). 

The US EPA has not published any CSFs for exposures to any compounds via dermal 
pathways. However, based on conversations with Region V staff members, Celotex and 
AlliedSignal have agreed to include possible risks from dermal exposure in the 
calculations in this report by cross-assigning the CSFs for the ingestion pathway to the 
dermal pathway. 
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6. Exposure Assessment 

This section describes the exposure scenarios considered in this risk assessment (US 

EPA, 1990, EFH). 

6.1 Summary of Exposure Scenarios 

6.1.1 Classification of Soil 

lEPA and ERM (1995, DSR) reported surface soil data for samples collected in the top 

few inches of the soil. We assume that the wind has transported some PAHs from the 

industrial property and has deposited some of them on surface soils. We also assume 

that some of the PAHs now found in soils in the residential neighbortnood come from 

other industrial, commercial, and/or residential sources (ATSDR, 1990). 

PAHs in soils are bound to the soil matrix by chemi-adsorption; this physical-chemical 

bond increases in strength overtime (GRI, 1995). For these reasons, exposure 

scenarios have been limited to surface soils (E&E, 1995, Report). Following this 

precedent, we consider only exposures to surface soils in the vicinity of the industrial 

property. 

6.1.2 Populations and Exposure Pathways of Concem 

This human health risk assessment considers exposures to people living in houses near 

the industrial property under current and future conditions (Table 6). We consider three 

age groups of people: children (ages 1 through 6 years), teenagers (ages 7 through 17 

years), and adults (ages 18 years and older). 

Each person could theoretically be exposed to Study Chemicals via any of the exposure 

pathways listed in Table 6: 

• ingestion of soil outdoors (and dust indoors), 

• inhalation of fugitive dust, 

• dermal contact with soils, 

• inhalation of soil vapors. 
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As noted above, PAHs exhibit little tendency to volatilize. For this reason, we believe 
inhalation exposures to soil vapors, and any risks resulting therefrom, to be negligible. 
We do not consider them further. 

As discussed above, E&E (1995, Report) estimated incremental cancer risks associated 
with inhalation of fugitive dust for the population of residents. We have checked their 
calculations, and we agree that the estimate of incremental cancer risk due to inhalation 
of fugitive dust is more than four orders of magnitude (a factor of >10,000) less than the 
incremental cancer risk due to incidental soil ingestion. Therefore, we do not consider 
the inhalation pathway further. 

As discussed in the E&E reported (October 1995), the US EPA has not published CSFs 
for any PAHs via demnal contact. Therefore, E&E did not evaluate cancer risks resulting 
from demnal exposure in their report, nor did Alceon evaluate possible cancer risks via 
demnal exposure in either of our eariier risk assessments (Alceon, 1996, DRA; 1996, 
PRA). However, based on conversations with Region V staff members, Celotex and 
AlliedSignal have agreed to include possible risks from demnal exposure in the 
calculations in this report by cross-assigning the CSFs for the ingestion pathway to the 
dermal pathway. It is assumed that exposure may occur via ingestion or dermal contact 
with PAHs in outdoor surface soils or indoor dust. 

6.2 Exposure Variables 

For each of the exposed age groups in the residential population, we present three sets 
of exposure variables. First, we present point values for the exposure variables for RME 
conditions as proposed by Celotex and AlliedSignal. Second, we present full-information 
distributions for the exposure variables as proposed by Celotex and AlliedSignal. Third, 
we present point values for the exposure variables for default RME conditions as 
proposed by Region V. 

Table 7 shows the assumptions for each exposure variable. The first three columns of 
Table 7 list the name of the exposure variable, the algebraic symbol for the exposure 
variable, and its units. The next three columns list the point estimates proposed by 
Celotex and AlliedSignal for RME conditions, along with a citation to the source 
document. The next four columns of Table 7 list the distribution proposed by Celotex 
and AlliedSignal, including the probability density function (PDF) for the distribution, its 
support, its 95th percentile, and its median (50th percentile). The second page of the 
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table lists the point estimates proposed by Region V for default RME conditions in a 
similar fomnat. 

6.3 Detailed Exposure Scenarios 

6.3.1 Exposure Frequency 

6.3.1.1 Total Exposure Frequency 

Celotex, AlliedSignal, and Region V agree that residents living near the Celotex property 
are exposed for a total of 350 days per year. We use this point value in all the 
calculations, both detemninistic and probabilistic. This value originates from the default 
values published among Interim Final Standard Exposure Factors (US EPA, 1991, 
Default) for the Superfund program nationwide. The value is based on the implicit 
assumption that each child, teen, and adult travels or vacations outside the 
neighbortnood some 15 days each year. 

6.3.1.2 Exposure Frequency to Soils Outdoors 

Celotex and AlliedSignal: Celotex and AlliedSignal consider that children, teens, and 
adults have 164,177, and 167 days per year, respectively, of exposure to surface soils 
outdoors for RME conditions. These point values are chosen as the median values from 
the distributions developed on a site-specific basis as follows (see also Appendix D): 

The frequency of exposure is a function of presence at a potential exposure point and 
activity while at the potential exposure point. In particular, since soil ingestion rates are 
based on the quantity of soil ingested per day of exposure, we estimate the number of 
days an individual is engaged in an activity that results in contact with surface soil in the 
neighbortnood. 

Activities at the residence vary widely. Typical indoor activities include sleeping, 
preparing and eating meals, watching TV, playing, doing housework. Typical activities 
outdoors include playing and gardening. Data describing the frequency with which 
individuals participate in these activities are scarce. 

Lacking detailed infomnation concerning activity patterns, we instead rely on a surrogate 
for activities that involve exposures to surface soils. This surrogate is based on the 
following reasoning: We know that weather strongly affects the nature and duration of 
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outdoor activities. Since weather data have been routinely recorded at both O'Hare and 
Midway Airports for many decades (US DoC, 1992), we use historical weather 
conditions at Midway Airport -- the closer of the two airports in Chicago -- as a surrogate 
for information concerning activity patterns outdoors. 

Table 8 summarizes the average daily temperatures recorded at Midway Airport from 
1961 to 1990 (US DoC, 1992). More specifically, the top two rows of data in Table 8 
show the number of days per year that are at or above the stated temperature and ~ by 
difference ~ the number of days per year that are below the stated temperature. For 
example, in a typical year, there are 196 days with average temperatures > 50 degF and 
169 days with average temperature < 50 degF. 

For the children, we assume that the average daily temperature strongly influences the 
fraction of days in a year on which a child plays outside and incidentally ingests some 
surface soil. In particular, we assume these breakpoints as shown in Table 8: 

For days when the average daily temperature is < 32 degF, we assume that 
no child incidentally ingests soils outdoors. On such cold days, the outdoor 
soils are frozen and/or covered with snow and ice. 

For days when the average daily temperature is < 40 degF, we assume that 5 
percent of children incidentally ingest some surface soils outdoors. 

For days when the average daily temperature is < 50 degF, we assume that 
20 percent of children incidentally ingest some surface soils outdoors. 

For days when the average daily temperature is < 60 degF, we assume that 
70 percent of children incidentally ingest some surface soils outdoors. 

For days when the average daily temperature is > 70 degF, we assume that 
100 percent of children incidentally ingest some surface soils outdoors. 

These assumptions, shown in Table 8, define a range (distribution) for the number of 
days per year that a child incidentally ingests surface soils or has dermal contact with 
surface soils outdoors. The median of this distribution is 164 days per year, the value 
chosen as the RME input for children in Table 7. Appendix D gives the full-information 
probability distribution for this exposure variable in the fonn of custom, piece-wise linear 
distribution. 
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For teens, we assume the breakpoints shown in Table 8. These assumptions reflect the 
fact that teens are more mobile and active outdoors than children, and so we assume 
higher frequencies of exposure for teens than for children. These assumptions for teens 
define a range for the number of days per year that a teen incidentally ingests surface 
soils or has demnal contact with soils outdoors. The median of this distribution is 177 
days per year, the value chosen as the RME input for teens in Table 7. Appendix D 
gives the full-information probability distribution for this exposure variable in the form of 
custom, piece-wise linear distribution. 

For adults, we assume the breakpoints shown in Table 8. These assumptions reflect the 
fact that adults are less mobile and active outdoors than teens, and so we assume 
frequencies of exposure for adults similar to the ones for children. These assumptions 
for adults define a range for the number of days per year that an adult incidentally 
ingests surface soils or has demnal contact with surface soils outdoors. We use the 
distribution for adults developed in Appendix D. The median of this distribution is 167 
days per year, the value chosen as the RME input for adults in Table 7. Appendix D 
gives the full-infomnation probability distribution for this exposure variable in the form of 
custom, piece-wise linear distribution. 

Region V: For default RME conditions. Region V assumes that each child, teen, and 
adult has exposure to surface soils outdoors on 350 days each year, i.e., every day 
regardless of temperature or snow cover. Region V chooses 350 days per year as the 
default RME exposure frequency from the default values published among the Interim 
Final Standard Exposure Factors (US EPA, 1991, Default) for the Superfund program 
nationwide. 

6.3.1.3 Exposure Frequency to Dust Indoors 

Celotex and AlliedSignal: For each age group, we estimate the number of days of 
exposure to dust inside the house as the difference between the total number of days of 
exposure each year (350 days per year) and the number of days of exposure to soils 
outside the house. For RME conditions, children, teens, and adults have 186,173, and 
183 days per year, respectively, of exposure to dust inside the home. 

Region V: For each age group. Region V also assumes that the number of days of 
exposure to dust inside the house equals the difference between the total number of 
days of exposure each year (350 days per year) and the number of days of exposure to 
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soils outside the house. Since Region V assumes that each person has 350 days per 
year of exposure outside the house for default RME conditions, the Region assumes, in 
effect, that each person has zero days per year of exposure inside the house. 

6.3.2 Exposure Duration 

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V 
about the duration of exposures for various age groups in the neighborhood. 

Celotex and AlliedSignal: Celotex and AlliedSignal consider that children, teens, and 
adults have 6,11, and 1 years of exposure, respectively, in the neighborhood. The 
value for total exposure duration for RME conditions (18 years) was chosen as the 90th 
percentile of the neighbortnood-specific occupancy duration, as detailed in Appendix E. 

The duration of exposure is limited to the period in which an individual lives in the 
neighborhood. When they were employees of the US Environmental Protection Agency, 
Israeli and Nelson (1992) estimated distributions of time of residence for different 
groups of US households based on data published by the Bureau of the Census. Israeli 
and Nelson report that the distribution for total residence time is essentially an 
exponential distribution with a different mean value for each housing group. An 
exponential distribution is completely characterized by that mean value (as a single 
parameter) and is highly skewed, with a long tail to the right. 

Although Israeli and Nelson (1992) estimate distributions of residence time for 
households and not for individuals, they state that corresponding residence times for 
individuals are expected to be smaller. They also state that "[t]he values calculated here 
can be considered to represent upper limits of the expected time for individuals to live at 
the same residence." (emphasis added). Thus, our use of the distributions of residence 
time estimated by Israeli and Nelson (1992) results in conservative estimates of 
exposure duration for potentially exposed individuals. 

US EPA Region V's contractor (Ecology & Environment, 1995, Letter) has stated "A 
review of 1990 housing population statistics for Chicago's South Lawndale Community 
Area (where the site is located) indicates that the census tract in which the site is 
located includes a significant amount of owner-occupied households (approximately 49 
percent) (US Census Bureau, 1990)." 
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We accept 49 percent as the fraction (a point value) of owner-occupied houses in the 
neighbortnoods surrounding the industrial property. From this, 51 percent is the fraction 
(a point value) of nonowner-occupied houses in the same neighborhoods (US BoC, 
1991). 

In Table IV, in a column titled "Average total residence time, T (years)", Israeli and 
Nelson (1992) show that the exponential distribution for "Owners" is characterized by a 
mean value of 11.36 years and that the exponential distribution for Renters is 
characterized by a mean value of 2.35 years. From these values, we estimate the RME 
total exposure duration as the 90th percentile of the neighborhood-specific occupancy 
as 18 years. (See also supporting materials in Appendix E.) 

To estimate the exposure duration for each age group, we assumed that a potentially 
exposed individual spends his or her first years of life at the residence. LaGoy (1987) 
reports that children of age one year or less have little direct contact with soil. We note 
that the assumption of spending the first years of life at a residence near the property is 
health protective because the rate of soil ingestion is generally higher for children than 
for teens or adults. Also, other exposure factors (e.g., low body weight for children) 
combine to increase the dose received by children relative to older age groups. 

For children, we assume that exposures to surface soil start at age 1 year. Therefore, 
we consider that RME exposure for children begins at age one year and continues 
through age 6 years, for a total of 6 years. This value is reported in Table 7. 

For teens, the duration for RME exposure is 11 years (from age 7 years through age 17 
years). We assume older children and teenagers are exposed for the time during which 
they reside in the vicinity of the industrial property. Subtracting exposure during 
childhood, this is a period of 11 years. Therefore, RME exposure for teens covers 11 
years, as reported in Table 7. 

For adults, we use subtraction to find that adults are exposed for 1 year for RME 
conditions. 

Overall, we quantify RME exposures to a person for a full 18 years ~ 6 years as a child, 
11 years as a teen, and 1 year as an adult. This method is conservative because it 
assigns RME exposure to begin with the group (children) most likely to receive the 
highest dose. Appendix E gives the full-information probability distribution for this 
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exposure variable in the form of a compound distribution for the mixture of two 

exponential distributions. In each iteration of the Monte Cario simulations, we 

conservatively assign the first years of exposure the child, then any remaining balance 

of exposure to the teen, and then any remaining balance of exposure to the adult. 

Region V: For default RME conditions, Region V assumes that each person lives in the 

neighbortnood for a total of 30 years, with this time allocation: 6 years for children, 11 

years for teens, and 13 years for adults. Region V chooses 30 years as the default RME 

exposure duration from the default values published among the Interim Final Standard 

Exposure Factors (US EPA, 1991, Default) for the Superfund program nationwide. 

6.3.3 Exposure via Ingestion of Outdoor Soils and Indoor Dust 

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V 

about the ingestion rate of outdoor soil and indoor dust for various age groups for the 

default RME conditions. Table 7 also shows the distributions used in the simulations. 

6.3.3.1 Ingestion of Outdoor Soil 

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal assume that 

children, teens, and adults incidentally ingest 200,100, and 100 mg/day of outdoor soils 

on a day of outdoor exposure. In the Monte Cario simulations, Celotex and AlliedSignal 

assume the lognormal distributions listed in Table 7 for children, teens, and adults, as 

based on Thompson & Bumnaster (1991). 

For children, LaGoy (1987) and Hawley (1985) report that incidental soil ingestion can 

occur outdoors at any age, but is most prevalent among young children because young 

children (less than 3 or 4 years old) often mouth small objects. 

Rates of incidental ingestion of soil outdoors by young children have been directly 

measured by several researchers. In particular, Calabrese et al. (1989) and Binder et al. 

(1986) have applied the Limiting Tracer Method (LTM) to the problem of estimating 

incidental soil ingestion rates in young children. In these studies, soil ingestion rates 

were estimated by analyzing feces for trace elements found in soils but not typically 

found in foods. Accounting for differences in experimental design, their results are 

consistent. 

25 October 1996 32 Alceon ® 



A.169.03 2800 S. Sacramento Site 

Based on the analysis by Binder et al. (1986), Thompson and Burmaster (1991) 
estimate distributions of incidental soil ingestion rates outdoors for young children. We 
use these results here. Thompson and Bumnaster (1991) report that the data follow this 
lognomnal distribution: exp[N( 4.13, 0.80)] in mg/day. For RME conditions, the 90th 
percentile of this distribution is 173.1 mg/day. Rather than use the 90th percentile of the 
distribution in this risk assessment, we instead use 200 mg/day as the RME value for 
the ingestion rate for outdoor soil and indoor dust in accordance with US EPA guidance 
as the ingestion rate for children (see Table 7). This higher value is the 93rd percentile 
of the distribution of measured values. 

For teens, LaGoy (1987) notes that soil ingestion rates for older children and teenagers 
have not been studied extensively. Both LaGoy (1987) and Hawley (1985) indicate, 
however, that soil ingestion rates are expected to decrease as children grow older 
because mouthing of objects decreases with age. LaGoy (1987) assumes incidental soil 
ingestion rates of children 6 to 11 years of age to decrease by at least 50 percent. 
LaGoy suggests that incidental ingestion rates are lower still for older children and 
teenagers. Based on LaGoy, we assumed the RME ingestion rate for soils outdoors and 
dust indoors for teens is half that of children, resulting in a 93rd percentile of 100 
mg/day. This value is reported in Table 7. For the Monte Cario simulations of teens, we 
divide the lognomnal distribution for soil ingestion rate of children by a factor of two. 

For adults, LaGoy (1987) notes that soil ingestion rates for adults who are frequently in 
contact with soil are about half those for older children. We assumed the ingestion rates 
for soils outdoors and dust indoors for adults to be described by the same distribution as 
that used for teens. The 93rd percentile of this distribution is 100 mg/day. This value is 
reported in Table 7. For the Monte Cario simulations of adults, we divide the lognormal 
distribution for soil ingestion rate of children by a factor of two. 

Region V: For default RME conditions. Region V assumes these rates for the incidental 
ingestion of soils outdoors: 200 mg/day for children, 200 mg/day for teens, and 100 
mg/day for adults. Region V chooses these values for default RME conditions from the 
default values published among the Interim Final Standard Exposure Factors (US EPA, 
1991, Default) for the Superfund program nationwide. 
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6.3.3.2 Ingestion of Indoor Dust 

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal assume that 
children, teens, and adults incidentally ingest 200,100, and 100 mg/day of indoor dust 
on a day of indoor exposure. In the Monte Cario simulations, Celotex and AlliedSignal 
assume the lognormal distributions listed in Table 7 for children, teens, and adults, as 
based on Thompson & Burmaster (1991). These RME values and distributions for 
ingestion of indoor dust are identical to those assumed for the ingestion of soils 
outdoors. 

Region V: Since Region V assumes that all people ingest some soils outdoors for 350 
days per year for default RME conditions, it is not applicable to have an exposure 
variable for the ingestion of dust indoors for default RME conditions. As mentioned 
eariier. Region V bases its default RME exposure scenario on the default values 
published among the Interim Final Standard Exposure Factors (US EPA, 1991, Default) 
for the Superfund program nationwide. 

6.3.4 Exposure Point Concentration for Dust Indoors 

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V 
about the exposure point concentration for indoor dust. 

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal use 0.42 (42 
percent) as the transfer coefficient for the fraction of outdoor soil contributing to indoor 
dust. For the Monte Cario simulations, Celotex and AlliedSignal use the lognomnal 
distribution listed in Table 7 and developed in Appendix F as the full-infomnation 
exposure factor. The point value (42 percent) is the median of the lognomnal distribution. 

As shown in Appendix F, dust inside a house contains some materials generated 
indoors and some materials carried into the house from outdoors. Using naturally-
occurring conservative tracer chemicals, many researchers have measured the fraction 
of materials in house dust that originate outside a house. After analyzing these studies 
in detail and fitting a parametric distribution to them, we use 0.42 as the median 
"Transfer Coefficient" for this risk assessment. In other words, 42 percent of the material 
in house dust comes from soils outside the houses and the remainder comes from 
activities inside the house. Thus, for RME conditions, we model the exposure point 
concentration for BaPeq in dust inside the house as 42 percent of the concentration of 
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BaPeq in soils outside the house. As shown in Appendix F, we use a truncated 

lognomnal distribution to model the Transfer Coefficient, i.e., the fraction of indoor dust 

that originates from outdoor soils. As shown in Table 7, the median of this distribution is 

0.42 and the 95th percentile is 0.74 (see also Appendix F; Trowbridge & Bumnaster, 

1996). 

Region V: For default RME conditions. Region V considers that all exposures occur 

outside the house (or equivalently, that all indoor exposures have a Transfer Coefficient 

equal to one so that concentrations inside the house are identical to the concentrations 

outside the house). As mentioned eariier. Region V bases its default RME exposure 

scenario on the default values published among the Interim Final Standard Exposure 

Factors (US EPA, 1991, Default) for the Superfund program nationwide. 

6.3.5 Oral Absorption Adjustment Factor (AAF) 

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V for 

the oral absorption adjustment factor (oral AAF) for PAHs in soil and dust. 

Exposure dose does not take into account the body's greater or lesser absorption of 

chemicals encountered in different media. We incorporated absorption adjustment 

factors (AAFs) into the risk equations to account for the difference between the 

measured concentration in the medium of exposure and the amount absorbed by the 

body. Celotex, AlliedSignal, and Region V all define the AAF as the ratio of the 

absorption (bioavailability) by the route and medium of interest to the absorption by the 

route and medium used in the dose-response study for the compound. 

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal use 0.27 (27 

percent) as the oral AAF from both outdoor soils and indoor dust. For the Monte Cario 

simulations, Celotex and AlliedSignal use the four-parameter beta distribution listed in 

Table 7 and developed in Appendix F as the full-information exposure factor. The point 

value (27 percent) is the median of the four-parameter beta distribution. 

Evidence in the literature suggests that PAHs adsorbed to soils are far less than 100 

percent available when ingested. Thus, the dose received by an exposed individual 

comes from <100 percent of the PAH concentration in soil. 

The Gas Research Institute funded a study of the behavior and toxicity of organic 

chemicals in soils (GRI, 1995). As part of this study. Prof. Martin Alexander of Cornell 
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University reviewed the literature to evaluate the current understanding of the 

bioavailability of organic compounds that have been present in soils for extended 

periods. 

From his review, Alexander finds that organic compounds become more tightly bound to 

soil with increasing time because the compounds become sequestered within the soil 

itself, instead of simply remaining on the surface (GRI, 1995; Hatzinger & Alexander, 

1995). This aging and sequestration affects the behavior of the compound bound to the 

soil, making the compounds much less available to biological systems (Bonaccorsi et al, 

1984). This decreased extractability and bioavailability causes decreased 

biodegradability and toxicity. For chemicals like BaP that fomn strong bonds with soil, it 

is sometimes impossible to release the PAHs without using a Soxhiet extraction (boiling 

in strong acid for several hours). Alexander also indicates that bioavailability may also 

depend on the organic fraction of the soil. 

As shown in Appendix G, Brian H. Magee, a toxicologist with Ogden Environmental and 

Energy Services Company, has quantified the oral AAF after reviewing the literature on 

the absorption of PAHs from foods and soils (Ogden, 1996). Based on the materials in 

Appendix G, we estimate the RME oral AAF from soil and dust as 0.29 (or 29 percent) 

for all three age groups. Based on the same infomnation in Appendix G, we use a four-

parameter beta distribution (Beta[1, 3, 0.945, 0.07]) in the Monte Cario simulations. 

Region V: The Region assumes that the oral AAF for soils equals 0.9 (or 90 percent) for 

default RME conditions for all three age groups considered in the risk assessment 

(Podowski, 1996). Although Region V does not explicitly consider the oral AAF for 

indoor dust, it is implicitly the same as the oral AAF for outdoor soils . 

6.3.6 Adherence of Soil and Dust to Skin 

Table 7 shows the assumptions for dermal exposure made by Celotex and AlliedSignal 

and by Region V about the adherence of soil and dust to the skin of children, teens, and 

adults. 

6.3.6.1 Adherence of Outdoor Soil to Skin 

Celotex and AlliedSignal: Drawing on US EPA's published report (US EPA, 1992, 

Dermal), we assume that 1 mg/(cm2»day) of outdoor soils adheres to the skin of 
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children, teens, and adults for RME conditions. This is greater than the 95th percentile 
of the full-information distribution developed from US EPA's data. 

We find that a lognormal distribution gives a good fit to data published by the Agency 
(US EPA, 1992, Demnal) for the adherence of outdoor soils to skin of children, teens, 
and adults. The distribution ~ exp[Normal[-1.71,1.01)] ~ has a median value of 0.18 
mg/(cm2»day) and an upper 95th percentile of 0.95 mg/(cm2»day), a value in keeping 
with the RME point value. 

Region V: Region V assumes the same amount of outdoor soil and indoor dust adhere 
to the skin of children, teens, and adults: 1 mg/(cm2»day) for default RME conditions. 
This number is the default value from Agency guidance (US EPA, 1992, Demnal). 

6.3.6.2 Adherence of Indoor Dust to Skin 

Celotex and AlliedSignal: Based on the research. Kissel et al. (1996) report that less 
indoor dust adheres to skin than does outdoor soil because indoor dust has less 
moisture content than does outdoor soil. Based on this recently published research from 
the University of Washington, we assume that 0.2 mg/(cm2»day) of indoor dust adheres 
to the skin of children, teens, and adults for RME conditions (Kissel et al, 1996). By 
dividing the distribution for the adherence rate of outdoor soil to skin by a factor of five, 
we arrive at the distribution for the adherence rate of indoor dust to skin. This lognormal 
distribution has a median of 0.05 and a 95th percentile of 0.24 (see Table 7). 

Region V: Since Region V assumes that all people have demnal contact with soils 
outdoors for 350 days per year for default RME conditions, it is not applicable to have 
an exposure variable for the dermal contact with dust indoors for default RME 
conditions. To the extent that the Region allows for exposure to indoor dust, the 
adherence rate for indoor dust for default RME conditions is the same as the adherence 
rate for outdoor soils for default RME conditions. As before. Region V bases its RME 
exposure scenario on the default values published among the Interim Final Standard 
Exposure Factors (US EPA, 1991, Default) for the Superfund program nationwide. 

6.3.7 Total Skin Surface Area 

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V 
about the total skin surface area for children, teens, and adults. 
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Celotex and AlliedSignal: For RME conditions, we assume these values for total skin 
surface area from US EPA guidance documents: 0.73 m2 for children, 1.5 m2 for teens, 
and 2 m2 for adults. (US EPA, 1990, EFH). In the probabilistic exposure assessment, 
we use Costeff's formula (Costeff, 1966; Murray & Burmaster, 1992) to estimate the 
total skin surface area of children, teens, and adults as a function of body weight. 
Although Costeff originally developed his fomnula for children and teens, it also provides 
a good fit for adults as well. 

Region V: Region V assumes the same total skin surface area for RME conditions: 0.73 
m2 for children, 1.5 m2 for teens, and 2 m2 for adults. These numbers are consistent 
with default values presented in Agency guidance (e.g., US EPA, 1990, EFH). 

6.3.8 Fraction of Skin Exposed 

Table 7 shows the values assumed by Celotex and AlliedSignal and by Region V to 
represent the fraction of skin exposed to demnal contact with outdoor soils and indoor 
dust by the different age groups. 

Celotex and AlliedSignal: Celotex and AlliedSignal assume that each child, teen, and 
adult has 25 percent of his or her total skin area exposed to demnal contact to soils 
outdoors for RME conditions. According to tables published by US EPA (Anderson, 
1984), 25 percent coverage corresponds, for example, to having dermal contact with the 
forehead, face, both ears, neck, both hands, both foreamns, and both feet everyday. 
According to the same tables, 25 percent coverage also corresponds to having dermal 
contact with both hands, both feet, and both lower legs. In the probabilistic exposure 
assessment, Celotex and AlliedSignal also use 25 percent as a point estimate for the 
fraction of skin exposed. 

Region V: Region V assumes that each person has 25 percent of his or her total skin 
area exposed to dermal contact to soils outdoors for default RME conditions. Although 
Region V does not explicitly consider the fraction of skin exposed for indoor dust, it is 
implicitly the same as the fraction of skin exposed for outdoor soils. 

6.3.9 Demnal Absorption Adjustment Factor (AAF) 

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V 
about the demnal absorption adjustment factor for soil and dust. 
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Exposure dose does not take into account the body's greater or lesser absorption of 

chemicals encountered in different media. In estimating potential health effects, the 

medium of exposure for which a dose is being estimated must be the same as the 

medium of exposure on which the published toxicity value is based. Celotex, 

AlliedSignal, and Region V all incorporate absorption adjustment factors (AAFs) into the 

risk equations to account for the difference in absorption of the applied dose in the 

medium of exposure. The AAF is defined as the ratio of absorption (bioavailability) by 

the route and medium of interest to absorption by the route and medium used in the 

dose-response study for the compound. 

Celotex and AlliedSignal: As shown in Appendix G, Brian H. Magee has quantified the 

demnal AAF (Ogden, 1996). Based on Appendix G, we estimate the dermal AAF for 

outdoor soils and indoor dust as 0.02 (or 2 percent) for RME conditions for all three age 

groups. Based on Appendix G, we model the demnal AAF as the ratio of two scaled and 

translated beta distributions, where the numerator equals Beta4[1, 5, 0.147, 0] and the 

denominator equals Beta4[4,1, 0.397, 0.603] (see Table 7, Appendix G, and Burmaster, 

1996). 

Region V: Region V assumes that the demnal AAF for outdoor soils equals 0.15 (or 15 

percent) for default RME conditions for all three age groups (Podowski, 1996). 

6.3.10 Other Exposure Assumptions 

Table 7 also presents the values assumed for other exposure variables. The values 

chosen by Celotex and AlliedSignal and by US EPA Region V are in keeping with 

generally accepted values in risk assessment for the Superfund program (US EPA, 

1989, HHEM; US EPA, 1990, EFH). 

6.3.10.1 Lifetime 

As shown Table 7, Celotex, AlliedSignal, and Region V assume that a person lives 70 

years for both the detemninistic and the probabilistic calculations. 

6.3.10.2 Body Weight 

Celotex, AlliedSignal, and Region V make similar assumptions regarding the body 

weight of children, teens, and adults. Table 7 shows the values for the three age groups. 
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Celotex and AlliedSignal: For children for RME conditions, we average reported annual 
average body weights from age 1 year through age 6 years (Anderson et al., 1984). The 
average body weight for boys and giris in this age group is 16.4 kg. For teens for RME 
conditions, we average reported annual average body weights from age 7 years through 
age 17 years (Anderson et al., 1984). The average body weight for boys and giris in this 
age group is 44.9 kg. For adults for RME conditions, we use the standard US EPA value 
for the average weight of an adult men and women, 70 kg. 

For the simulations, we developed lognormal distributions for the body weights of 
children and teenagers (using equal proportions of boys and giris in each age group) 
based on fitted distributions in the literature (Bumnaster, Lloyd & Crouch, 1994). For 
children, we use the lognomnal distribution exp[Nomnal(2.69, 0.33)] for body weights 
measured in kg. The median, mean, and 90th percentile of this distribution are 14.7, 
15.6, and 22.5 kg, respectively. For teens, we use the lognomnal distribution 
exp[Nomnal(3.75, 0.37)] for body weights measured in kg. The median, mean, and 90th 
percentile of this distribution are 42.5, 45.5, and 68.3 kg, respectively. We use this 
published lognonnal distribution for the body weights of adults measured in kg: 
exp[Nomnal(4,263m 0.206)] (Table 7; and Brainard & Bumnaster, 1992). 

Region V: Region V uses 15, 45 and 70 kg as the RME body weights for children, teens, 
and adults, respectively. The values come from the default values published among the 
Interim Final Standard Exposure Factors (US EPA, 1991, Default) for the Superfund 
program nationwide or from other Agency tables (e.g., US EPA, 1990, EFH). 

6.4 Estimation of Doses to Populations of Concern 

We used the equations shown in Table 9 to estimate doses and cancer risk. Table 10 
shows the fomnulas used in the spreadsheet. The methods used to calculate the 
average daily doses are described in the following subsections. 

6.4.1 Fonward Calculation of RBCGs 

In their detemninistic risk assessment, E&E (1995) calculated point values for RBCGs by 
rearranging the risk equation, substituting the single target cancer risk, and solving for 
the fixed exposure point concentration. We refer to this calculation as a backward 
calculation. The backward calculation is acceptable in deterministic RBCGs when all the 
variables are point values. However, this backward calculation fails when using 
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probability distributions to calculate the RBCG as a distribution (Bumnaster, Lloyd & 
Thompson, 1995; Burmaster & Thompson, 1995). 

An alternative calculation, one that gives correct answers for all calculations, consists in 
calculating the acceptable exposure point concentration with the original risk equation 
(i.e., without using algebra to rearrange the risk equation). Since the RBCG is not 
solved for directly, it must be solved iteratively, by substituting different values for the 
RBCG until the target cancer risk (or a value slightly smaller) is reached. We refer to this 
direct approach as the iterative forward calculation. This iterative forward method works 
correctly for both deterministic and probabilistic calculations (Burmaster, Lloyd & 
Thompson, 1995; Bumnaster & Thompson, 1995). 

6.4.2 Estimation of Average Daily Dose on a Day of Exposure 

For each Study Chemical, we use the equations in Table 9 to estimate an average daily 
dose on a day of exposure, ADD(day), separately for each exposure pathway and each 
life stage that contribute to a given scenario. All ADD(day) values are in units of 
milligrams of Study Chemical per kilogram body weight per day (mg/(kg»day)). 

As shown in the fomnulae in Table 9, the ADD(day) is calculated for each age group by 
multiplying the Acceptable Exposure Point Concentration, the appropriate Absorption 
Adjustment Factor, the Contact Rate for the age group, and the Conversion Factor and 
by dividing by the Body Weight for the age group. 

6.4.3 Estimation of Average Daily Dose over a Lifetime 

For each Study Chemical, we use Equation 3 in Table 9 to estimate an average daily 
dose over a lifetime of exposure, ADD(life). The ADD(life) takes into account the 
frequency (days per year) with which exposure occurs. 

We estimate ADD(life) separately for each age group by multiplying the average daily 
dose on a day of exposure (ADD(day)) by the Exposure Frequency and an appropriate 
Conversion Factor. 

6.4.4 Estimation of Average Daily Dose (Total) 

We use Equation 3 in Table 9 to estimate a total average daily dose over a lifetime of 
exposure, ADD(total). The total average daily dose experienced during a lifetime, 
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ADD(total), takes into account the fraction of a lifetime during which the exposure 
occurs. Thus, ADD(total) is equal to ADD(life) if exposure occurs throughout the lifetime, 
but is smaller than ADD(life) if exposure occurs during only some years. Of course, the 
total ADD is the sum of the doses received from the ingestion pathway and the dermal 
contact pathway. 

We estimate ADD(total) by multiplying the value of ADD(life) for each age group by the 
duration of exposure for that age group, summing the three resulting products (one for 
each age group), and dividing by the number of years in a lifetime. 
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7. Risk Characterization 

7.1 Selection of Target Cancer Risk 

7.1.1 Target Risk for Detemninistic Calculations 

In their eariier detemninistic risk assessments, both E&E (1995) and Alceon (1996) used 
the target cancer risk of 10"^ (or one in ten thousand). 

This risk management target is consistent with the current National Contingency Plan 
(US EPA, 1990, NCP), published in the Federal Register in March 1990: 

For known or suspected carcinogens, acceptable exposure levels are 
generally concentration levels that represent an excess upper bound 
lifetime cancer risk to an individual of between 10"̂  and 10-6 using 
infomnation on the relationship between dose and response. The 1Q-̂  risk 
level shall be used as the point of departure for detemnining remediation 
goals for altematives when ARARs are not available or are not sufficiently 
protective because of the presence of multiple contaminants at a site or 
multiple pathways of exposure, (p. 8848) 

The "point of departure" reflects US EPA's preference for remedies that are at the more 
protective end of the risk range. However, 

a variety of site-specific or remedy-specific factors . . . will enter into the 
detemnination of where within the risk range of lO""* to ^0^^ the cleanup 
standard for a given contaminant will be established, (p. 8717) 

These factors may be related prevailing background concentrations, to other exposures 
to the same compounds in foods or other media, to other exposure issues (e.g., the 
cumulative effect of multiple contaminants), to uncertainty (e.g., the weight of scientific 
evidence concerning health effects), or to technical issues (e.g., detection limits for 
contaminants). 
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7.1.2 Target Risk for Probabilistic Calculations 

Following these precedents and the concepts presented in US EPA (1992, Exposure), 
we judge the acceptability or unacceptability of a distribution of risk using two 
constraints on the distribution (Burmaster & Thompson, 1994). 

• For a first constraint ~ and in keeping with the approach taken by E&E ~ we 
associate a target cancer risk of 1 in 10,000 (equivalent to 10"4) with the 95th 
percentile of the risk distribution. In other words, for a distribution of risk to be 
acceptable, its 95th percentile must be <10-4. In US EPA's terminology, this 
constraint takes the place of the Reasonable Maximum Exposure (RME 
exposure). 

AND 

For a second constraint, we associate a target cancer risk of 1 in 100,000 
(equivalent to 10"5 risk) with the median risk. In other words, for a distribution 
of risk to be acceptable, its 50th percentile (median) must be <^0^ .̂ In US 
EPA's temninology, this constraint takes the place of the Central Tendency 
Exposure (CT exposure). 

To be acceptable under this definition, a distribution of risk must meet both the 
constraints simultaneously. These two simultaneous constraints create a risk 
management policy that is more stringent than the one used by Ecology & Environment. 

These constraints agree with the concepts of (i) "high-end" risk or "Reasonable 
Maximum Exposure" risk and (ii) "typical" risk or "Central Tendency" risk as used in US 
EPA guidance in the Federal Register (US EPA, 1992, Exposure). This risk 
management policy ~ based on two simultaneously binding constraints, one on the 95th 
percentile risk and one on the median risk ~ resembles policies recently accepted by 
the US EPA at various Superfund sites when remediating or decommissioning facilities 
run by the US Department of Defense (US DOD) or by the US Department of Energy 
(US DOE). 

7.2 Estimation of RBCGs 

Tables 9 and 10 show the formulae used to estimate the incremental lifetime cancer risk 
(ILCR) from the total average daily dose. In keeping with US EPA's methods to estimate 
the pathway-specific ILCRs (US EPA, 1989, HHEM), we multiply the ADD(total) for each 
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Study Chemical by the appropriate CSF (i.e., the ingestion or inhalation CSF for that 

Study Chemical). 

Table 10 shows the formulae in the spreadsheet that were used to calculate a target 

cancer risk of just equal to or less than 10"4 risk. This target cancer risk is enclosed by a 

box and is located in the lower right-hand comer of the spreadsheet. 

7.3 Estimated RBCGs for the Study Area 

7.3.1 RBCG Based on Celotex's and AlliedSignal's Detemninistic Assumptions 

Using Celotex's and AlliedSignal's exposure factors for RME conditions in Table 7, we 

calculate that the deterministic RBCG for BaPeq in outdoor surface soils in the 

residential neighborhoods near the industrial property equals 27.5 mg/kg BaPeq for 

RME conditions (see calculations in Table 11). 

7.3.2 RBCG Based on Celotex's and AlliedSignal's Probabilistic Assumptions 

Table 13 shows the report from Crystal Ball® (Decisioneering, 1992). From the full 

simulation of 20,000 iterations and from the report, we see that an acceptable 

distribution of risk (one that meets both constraints defining the acceptability of a 

distribution of total risk for both the ingestion and the demnal pathways) occurs when the 

BaPeq concentration follows the distribution below. Since this distribution of BaPeq 

concentrations causes a distribution of risk that simultaneously meets (read, is equal to 

or less than) the two constraints defining the maximum acceptable risk, it is, by 

definition, the cleanup target for BaP concentration in soils. 

minimum = 0 mg/kg BaPeq 

10th percentile < 6.4 mg/kg BaPeq 

20th percentile < 9.5 mg/kg BaPeq 

30th percentile < 12.8 mg/kg BaPeq 

40th percentile < 16.4 mg/kg BaPeq 

50th percentile < 20.8 mg/kg BaPeq 

60th percentile < 26.1 mg/kg BaPeq 
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70th percentile 

80th percentile 

90th percentile 

95th percentile 

maximum 

< 33.3 mg/kg BaPeq 

< 43.6 mg/kg BaPeq 

< 58.2 mg/kg BaPeq 

< 72.7 mg/kg BaPeq 

< 99.9 mg/kg BaPeq 

This distribution, a lognomnal distribution truncated at 100 mg/kg BaPeq, has an 

arithmetic mean equal to 27.1 mg/kg BaPeq. See Figure 2. In a statistical sense, this 

probabilistic RBCG dominates the distribution of background concentrations discussed 

eariier (Clemen, 1991; see also Appendices A and B). In a colloquial sense, this 

probabilistic RBCG "is larger than" the distribution of background concentrations in 

Appendix A. 

From the simulation with 20,000 iterations and the report from Crystal Ball® 

(Decisioneering, 1992), we verify that the Incremental Lifetime Cancer Risk attributable 

to this distribution of BaPeq in soil meets the two constraints that define the acceptability 

of a distribution of total risk (the sum of the risk from the ingestion and dermal 

pathways): 

10th percentile 

20th percentile 

30th percentile 

40th percentile 

~> 50th percentile 

60th percentile 

70th percentile 

80th percentile 

90th percentile 

~> 95th percentile 

10-6.28 

10-5.88 

10-5.61 

10-5.39 

10-5.19 

10-5.00 

10-4.80 

10-4.58 

10-4.30 

10-4.08 

10-5 

10-4 
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The arithmetic average of this distribution of Incremental Lifetime Cancer Risk equals 

10-5.24 = 5J5 • 10-6 risk, well within the policy in the National Contingency Plan (US 

EPA, 1990, NCP). Interestingly, the risk distribution from the ingestion pathway 

dominates the risk distribution from the dermal pathway. 

7.3.3 RBCG Based on Region V's Deterministic Assumptions 

Using US EPA Region V's default exposure factors for RME conditions in Table 7, we 

calculate that the detemninistic RBCG for BaPeq in outdoor surface soils in the 

residential neighborhoods near the industrial property equal 1.93 mg/kg BaPeq for 

default RME conditions (see calculations in Table 12). 

7.4 Interpretation and Application of the RBCGs 

Under the Superfund statute, a RBCG is commonly calculated in the risk assessment 

portion of a Remedial Investigation (the Rl), while the engineering method(s) of 

achieving that RBCG are developed in the Feasibility Study (the FS). In the Record of 

Decision (ROD), the risk manager has considerable latitude in selecting the best risk 

management option for a situation, taking into account all the goals, policies, desiderata, 

and balancing criteria - including background concentrations, engineering feasibility, 

economics, and public acceptability ~ in the National Contingency Plan (US EPA, 1990, 

NCP). 

No matter how the risk manager arrives at the risk management intervention during the 

FS study and in the ROD, he or she must consider four fundamental issues that we 

have not heretofore considered in this report: 

• a RBCG for surface soils has the character of an Exposure Point 
Concentration (EPC) for those surface soils, 

• an EPC is defined by the US EPA as an arithmetic mean concentration over 
the variability in a set of measurements (or often as the 95th percentile of the 
uncertainty in the arithmetic mean concentration), 

• EPCs for soils must consider the two-dimensional spatial character of the 
concentrations in surface soils before and after the proposed remediation, 
and 

• EPCs, as spatial average values, apply over a population of spatial 
measurements where a population of people have exposures. 
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Therefore, regardless of whether the RBCG is calculated using deterministic or 
probabilistic methods, an RBCG is not the maximum allowable concentration of BaPeq 
in surface soils at every single point in space, nor is it the maximum allowable 
concentration of BaPeq experienced by any single person. 

Even in a situation where the risk manager has chosen a point value as the RBCG for 
surface soils, an EPC fully meeting that RBCG over an area will necessarily contain 
some or many individual concentration measurements at spatial points that exceed the 
point value of the RBCG. Similarty, in a population of people in an area that meets an 
EPC achieving a point value RBCG, there will be some individuals who have higher 
personal EPCs than do other individuals living or worthing in the same area. These facts 
arise from the fundamental and inalienable two-dimensional spatial nature of 
concentrations in surface soils. Succinctly, a RBCG does not apply to the maximum 
single concentration in an area, nor does it apply to the maximally exposed person. 

Altemately, in a situation where the risk manager has chosen a distribution as the 
RBCG for surface soils, a distribution of EPCs fully meeting that distributional RBCG 
may well contain some or many individual concentration measurements at spatial points 
that seem to fall outside the distributional RBCG yet achieve the EPC. 

Of course, based on US EPA's national policy, it is not appropriate to have a RBCG that 
is lower than the natural or anthropogenic background concentrations for the same 
compounds in the same media in a similar but unaffected area. Celotex and AlliedSignal 
understand that any risk management decision based on treating one area to match the 
background concentrations in a neart̂ y but unaffected area (taken as the background 
area) must consider both (i) matching the spatial pattems of concentrations in the 
treatment area and the background area and (ii) matching the distributions of 
concentrations in the treatment area and the background area. 

For the neighborhoods surrounding the industrial property, it is premature to design or 
even conceptualize the engineering methods to meet a particular risk management 
decision ~ whether that decision is couched in terms of meeting a distribution of 
background concentrations or in terms of meeting a detemninistic or probabilistic RBCG. 
While we cannot resolve all these issues in this report, we can describe their operation 
in broad brush. 
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7.4.1 Interpretation of a Detemninistic RBCG 

Since we have calculated the RBCG in the fonward direction for RME and default RME 

sets of assumptions, each of these alternate deterministic RBCGs has the character 

and interpretation of an Exposure Point Concentration (EPC) for outdoor surface soils. 

When interpreting a deterministic RBCG for outdoor surface soils, the US EPA 

recommends calculating the EPC as the 95th-percentile upper confidence level (UCL) of 

the uncertainty on the arithmetic mean concentration of variability experienced by the 

exposed population US EPA, 1992, EPC. This EPC for outdoor surface soils is not the 

maximum concentration in an area, and it is not calculated for each single property, one 

at a time. 

Therefore, to interpret or apply one of the RBCGs for outdoor surface soils in a 

residential area near the industrial property, we would not consider just one property at 

a time. In keeping with US EPA's guidance on developing EPCs for surface soils, we 

would instead consider the 95th percentile upper confidence limit (UCL) on the 

arithmetic mean of the surface soil concentrations averaged over the many properties 

where each person has exposure (US EPA, 1992, EPC). Since no person has all of his 

or her exposure on a single property, the EPC is property calculated over many 

properties or over the whole neighbortnood using activity-, time-, and distance-weighted 

spatial statistics. 

7.4.2 Interpretation of a Probabilistic RBCG 

Since we have calculated this probabilistic RBCG in the fonn/ard direction, it also has the 

character and interpretation of a distribution of Exposure Point Concentrations (EPCs) 

for outdoor soils. Again, since no person has all of his or her exposure on a single 

property, the EPC is properly calculated over many properties or over the whole 

neighborhood using activity-, time-, and distance-weighted spatial statistics. To apply 

this probabilistic cleanup target in practice, remedial engineers would compare this 

distribution for the RBCG directly to the measured distribution of BaPeq concentrations 

in the surtace soils in the population of yards in the residential neighborinoods in the 

Study Area near the industrial property. Two cases might arise: 
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• First, the distribution of EPCs for measured BaPeq concentrations in surface 
soils may have percentiles and a maximum that all fall below the 
corresponding percentiles and below the maximum (100 mg/kg) for BaPeq in 
the RBCG. In this case, no remedial action is necessary or appropriate. 

• Second, the distribution of EPCs for measured BaPeq concentrations in 
surface soils may have certain percentiles or a maximum that exceeds the 
corresponding percentiles or maximum (100 mg/kg) for BaP in the RBCG. In 
this case, some type of remediation may be considered. 

If remediation is considered, there are two bedrock principles that should guide the 
program: 

• The "Worst First" Principle - As enunciated by Resources for the Future 
(Finkel & Golding, 1994) for situations like this, the "Worst First" policy states 
that the optimal public health policy includes two steps: 

1. prioritize the problems and opportunities, and 

2. focus resources on the worst of the problems first. 

• The "Distribution Matching" Principle - As stated in texts on decision science 
(e.g., Clemen, 1991), it is both possible and desirable from both an efficiency 
and equity points of view to undertake interventions to make the distribution of 
field conditions match the distribution of the goal. 

In practice, a remedial engineer might implement these two policies along these lines. 
The engineer would implement this algorithm (or one like it) in an iterative fashion, 
searching for an optimal solution, i.e., a solution that meets the risk management policy 
in the most cost-effective way: 

• First, the engineer would measure the BaPeq concentrations in the surface 
soils in all the residential yards in the neighbortnoods surrounding the 
industrial property. 

• Second, the engineer would compute the activity-, time-, and distance-
weighted spatial statistics and estimate the distribution of EPCs. 

• Third, the engineer would compare the distribution of EPCs based on 
measured concentrations to the distribution for the RBCG. If any percentiles 
of the EPC distribution exceed the corresponding percentile or maximum of 
the probabilistic RBCG, then the engineer would remediate the surface soils 
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at one or more of the more highly contaminated properties (say, to a 
concentration below the background distribution). 

If the distribution of the EPCs based on the remaining measured 
concentrations still does not meet the distribution for the RBCG, then the 
engineer would remediate the surface soils at other highly contaminated 
properties. 

The engineer would continue to remediate the surface soils at the highly 
contaminated properties remaining on the list until the distribution of EPCs 
based on the remaining measured concentrations in the surface soils no 
longer has percentiles that do not meet the percentiles of the RBCG 
distribution. 

When this algorithm stops, the distribution of EPCs in the neighborhoods will 
be statistically smaller than the RBCG distribution, i.e., the distribution of 
EPCs will meet all the constraints defined by the RBCG distribution. 

An engineer would use a similar algorithm to achieve a cleanup in an area specified in 
terms of achieving background concentrations. 
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8. Uncertainty Analyses 

8.1 General Discussion for All Deterministic and Probabilistic Calculations 

As in any risk assessment, the factors considered in this report contain both variability 

and uncertainty. As we use the temns, variability represents heterogeneity or diversity in 

a well-characterized population, usually not reducible through further measurement or 

study. Uncertaintv represents ignorance ~ or lack of perfect information - about a 

pooriy-characterized phenomenon or model, sometimes reducible through further 

measurement or study. 

Appendix H examines uncertainties in the exposure and health effects data that are 

relevant for assessing potential human health risks associated with exposure to 

contaminants originating from the industrial property. Many of the key quantities 

considered in the risk assessment are highly uncertain. For example, the following 

factors have not been estimated with high precision or confidence: 

• The spatial distribution and extent of contamination from the industrial 
propertv in various directions is not well known. Instead, it must be estimated 
from soil sample data. (See discussion in Appendix B). 

• The fraction of PAHs found at anv specific location that arise from the 
industrial property is uncertain. The problem of distinguishing between site-
related and "background" contamination arises, since the same contaminants 
and approximate composition of PAHs found near the industrial property are 
also found at distances remote enough to make association with the industrial 
property implausible. 

• The magnitudes and frequencies of individual exposures depend on individual 
behaviors and on details of the yards (e.g., extent of vegetative cover as 
opposed to rock and debris cover) that have not been quantified. Hence, the 
actual magnitude of individual exposures is uncertain. Drive-by inspection of 
yards in the vicinity of the industrial property suggests that they are dissimilar 
in many respects (e.g., more rubble, less accessible soil useful for gardening 
or recreation) compared to locations further from the industrial property. How 
these local characteristics affect individual behaviors and exposures has not 
been estimated. Similariy, local demographic characteristics (e.g., the ages, 
occupations, recreational pattems, etc.) of neighbors of the industrial property 
have not been examined. Yet, these characteristics may affect the 
magnitudes and frequencies of individual exposures to yard soils. 

• The amounts of internal doses of reactive, potentially carcinogenic PAH 
metabolites fomned in humans at the exposure levels in question are not 
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known. In particular, the relative amounts of intemal doses formed in humans 
compared to the amounts formed in animals under the experimental 
conditions used to establish the carcinogenicity of PAHs such as B(a)P are 
not known. 

The cancer potency of PAHs. including B(a)P, at the concentrations found 
near the industrial property is not known. Specifically, the relation between 
carcinogenic potency of B(a)P at the high doses used in animal 
carcinogenicity experiments and its potency at the much lower levels found in 
the soil samples examined in this study is not known. In addition, the potency 
of the PAH mixtures found in the soil samples is uncertain. 

These uncertainties create a challenge for fair, efficient, health-protective risk 
management. The actual human health risks posed by the industrial property are not 
known. They would be costly to quantify with high precision and confidence, since doing 
so would require resolving each of these sources of uncertainty. Yet, it is desirable to 
avoid the two types of risk management errors most likely to occur in this case: failure to 
adequately reduce site-related exposures, and failure to limit reductions to those that 
significantly reduce actual human health risks. The purpose of the analyses reported in 
this appendix and the next one is to reduce the probabilities of both types of errors by 
introducing relevant information and findings from recently completed data analyses and 
literature reviews. A suggested approach to risk management decision-making in the 
presence of the uncertainties just listed is offered after some relevant facts, data, and 
statistical results have been summarized. 

Appendix B focuses on the first issue ~ uncertainty about the spatial extent of 
contamination near the industrial property. This issue can be addressed without 
considering risk assessment questions and data: it rests solely on statistical analysis of 
the soil sample data collected so far. Analysis of these data reveals the maximum 
probable geographic extent of effects from the industrial property, and thus provides a 
basis for bounding the geographic scope of the risk assessment without regard for risk 
magnitudes. Appendix H presents the remaining sources of uncertainty and their 
implications for risk management. 

8.2 Semi-Quantitative Uncertainty Analysis for Deterministic Calculations 

Both sets of detemninistic calculations in this report include compounding conservatisms 
in the sense that each calculation includes some conservative assumptions and some 
median or average assumptions for exposure variables. When a calculation is done 
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using only median values, the calculation does not contain compounding conservatisms 
because medians are statistically neutral in multiplicative equations (Burmaster & 
Bloomfield, 1996). However, calculations involving average values and other percentiles 
greater than the 50th percentile do create compounding conservatisms in the risk 
equation (Burmaster & Bloomfield, 1996) 

8.2.1 Celotex's and AlliedSignal's RME Assumptions 

In developing the inputs for the Celotex and AlliedSignal risk assessment, our general 
approach to uncertainty has been to use an appropriate combination of health-protective 
assumptions in estimating exposures, so that the cancer risks that we estimate are 
based on a "high end exposure" to compensate for the uncertainties inherent in this 
analysis (as defined in US EPA, 1992, Exposure). We believe that we have included 
exposure assumptions that are reasonable for the Study Area and which consider 
sensitive sub-populations, especially children and teens. 

For both the ingestion pathway and the dermal pathway for children, teens, and adults, 
we use a balanced combination of median values (which are statistically neutral), 
average values (which introduce a moderate amount of statistical compounding), and 
some conservative values (>90th percentiles; which introduce a strong amount of 
statistical compounding) in the exposure calculations. 

Median Values (50th Percentiles) 
Oral Absorption Adjustment Factor 
Demnal Absorption Adjustment Factor 
Exposure Frequencies Outdoors and Indoors 

Average Values (between 50th and 85th Percentiles) 
Transfer Coefficient to Indoor Dust 
Body Weight 
Skin Area 
Fraction of Skin Exposed 

Conservative Values (>90th Percentiles) 
Soil and Dust Ingestion Rates 
Exposure Duration 
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Soil and Dust Adherence Rates 

The conservative factors alone ~ not counting the compounding effects of the average 
values ~ compound to create a value of exposure above the 95th percentile of exposure 
(US EPA, 1992). When this high value is multiplied by the 95th percentile for the Cancer 
Slope Factor (from US EPA's IRIS database), the resulting estimate of risk has a still 
higher percentile. In addition, we have included other conservatisms, for example, by 
assuming that all exposures in the population begin at age 1 year. 

8.2.2 US EPA Region V's Default RME Assumptions 

On the other hand, the US EPA Region V has included many more strongly 
compounding conservatisms, giving the results with their assumptions the character of a 
"bounding estimate" (as defined in US EPA, 1992, Exposure). 

For both the ingestion pathway and the dermal pathway for children, teens, and adults, 
US EPA Region V uses a different combination of values, with fewer median values 
(which are statistically neutral) and more conservative values (>90th percentiles; which 
introduce a strong amount of statistical compounding) in the exposure calculations. 

Median Values (50th Percentiles) 
None 

Average Values (between 50th and 85th Percentiles) 
Transfer Coefficient to Indoor Dust 
Body Weight 
Skin Area 
Fraction of Skin Exposed 

Conservative Values (>90th percentile, some >95th percentile) 
Oral Absorption Adjustment Factor 
Demnal Absorption Adjustment Factor 
Soil and Dust Ingestion Rates 
Exposure Duration (>95th percentile) 
Exposure Frequencies Outdoors and Indoors (>95th percentile) 
Soil and Dust Adherence Rates 
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The conservative factors alone - not counting the compounding effects of the average 
values ~ compound to create a value of exposure far above the 95th percentile of 
exposure (US EPA, 1992). When this high value is multiplied by the 95th percentile for 
the Cancer Slope Factor (from US EPA's IRIS database), the resulting estimate of risk 
has a still higher percentile - a value in the range of a "bounding estimate" (as defined 
in US EPA, 1992, Exposure). 
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9. Summary of the Risk Based Cleanup Goals for Surface Soils 

Alceon performed a human health risk assessment that estimates different sets of risk-
based cleanup goals for the concentration of BaPeq in surface soils at homes near the 
industrial property in Chicago. The RBCGs are based on acceptable exposure point 
concentrations of carcinogenic PAHs in soils in the vicinity of the industrial property. 

Using detemninistic methods ~ techniques that are neither full-information nor state-of-
the-art ~ Alceon estimates the neighborhood-specific risk-based cleanup goals for 
surface soils outside the residential houses near the industrial property as follows: 

Celotex's and AlliedSignal's RME Assumptions: 27.5 mg/kg BaPeq 

US EPA Region V's Default RME Assumptions: 1.93 mg/kg BaPeq 

Using probabilistic methods ~ techniques that are both full-information and state-of-the-
art ~ we see that an acceptable distribution of risk (one that meets both constraints 
defining the acceptability of a distribution of total risk for both the ingestion and the 
demnal pathways) occurs when the BaPeq concentration follows the distribution below. 
Since this distribution of BaPeq concentrations causes a distribution of risk that 
simultaneously meets (read, is less than) the two constraints defining the maximum 
acceptable risk, it is, by definition, the cleanup target for BaP concentration in soils. 

minimum = 0 mg/kg BaPeq 

10th percentile < 6.4 mg/kg BaPeq 

20th percentile < 9.5 mg/kg BaPeq 

30th percentile < 12.8 mg/kg BaPeq 

40th percentile < 16.4 mg/kg BaPeq 

50th percentile < 20.8 mg/kg BaPeq 

60th percentile < 26.1 mg/kg BaPeq 

70th percentile < 33.3 mg/kg BaPeq 
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80th percentile < 43.6 mg/kg BaPeq 

90th percentile < 58.2 mg/kg BaPeq 

95th percentile < 72.7 mg/kg BaPeq 

maximum < 99.9 mg/kg BaPeq 

This distribution, a lognormal distribution truncated at 100 mg/kg BaPeq, has an 
arithmetic mean equal to 27.1 mg/kg BaPeq. In a statistical sense, this probabilistic 
RBCG dominates the distribution of background concentrations discussed eariier 
(Clemen, 1991; see also Appendices A and B). In a colloquial sense, this probabilistic 
RBCG "is larger than" the distribution of background concentrations in Appendix A. 
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10. Limitations 

Alceon has used reasonable care in perfomning all of the analyses in this report. Alceon 
has perfonned its services based upon risk assessment practices accepted at the time 
they were performed. 
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11. Abbreviations and Acronyms 

AAF 
ADD 
ADD(day) 
ADD(year) 
ADD(life) 
BaP 
BaPeq 
BW 
cPAHs 
CSF 
CT 
d 
DL 
E & E 
EE/CA 
EPC 
ERM 
ft 
g 
hr 
H 
HEAST 
HEE 
HHEM 
HI 
lARC 
lEPA 
ILCR 
IRIS 
kg 
KQC 

KQW 
Kp 
I 
MCL 
MCLG 
m 
m^ 
mg 

mm 
mol 
MW 
NCP 
ncPAHs 
NOAEL 
OSHA 
PAHs 
PHRED 
PM10 
PA 
ppb 
ppbv 

Absorption Adjustment Factor (oral or dermal) 
Average Daily Dose 
Average Daily Dose averaged over a day on which exposure occurs 
Average Daily Dose averaged over a year on which exposure occurs 
Average Daily Dose averaged over a lifetime of 75 years 
Benzo(a)pyrene 
Benzo(a)pyrene Toxic Equivalents 
Body Weight 
Carcinogenic Polycyclic Aromatic Hydrocarbons 
Cancer Slope Factor 
Central Tendency 
day 
Detection Limit 
Ecology and Environment 
Engineering Evaluation/Cost Analysis 
Exposure Point Concentration 
Environmental Resources Management 
feet 
gram 
hour 
Henry's Law Constant 
Health Effects Assessment Summary Tables (US EPA) 
High End Exposure 
Human Health Evaluation Manual (US EPA) 
Hazard Index 
international Agency for Research on Cancer 
Illinois Environmental Protection Agency 
Incremental Lifetime Cancer Risk 
Integrated Risk Information System (US EPA) 
kilogram 
Partition coefficient between water and organic carbon 
Partition coefficient between water and octanol 
Permeability Coefficient 
liter 
Maximum Contaminant Level 
Maximum Contaminant Level Goal 
meter 
cubic meter 
milligram 
microgram 
millimeter 
mole 
Molecular Weight 
National Contingency Plan 
Noncarcinogenic Polycyclic Aromatic Hydrocarbons 
No Observed Adverse Effect Level 
Occupational Safety and Health Administration 
Polycyclic Aromatic Hydrocarbons 
Public Health Risk Evaluation Database (US EPA) 
Concentrations of Particulate Matter Less Than lOum in Diameter 
Preliminary Assessment 
parts per billion 
parts per billion by volume 
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PRP 
RBCG 
RfD 
RME 
S 
SSI 
SSP 
TC 
USEPA 
Vp 
yr 

^ 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

Potentially Responsible Party 
Risk-Based Cleanup Goals 
Reference Dose 
Reasonable Maximum Exposure 
Solubility (aqueous) 
Screening Site Inspection 
Support Sampling Plan 
transfer coefficient 
US Environmental Protection Agency 
vapor pressure 
year 

2800 S. Sacramento Site 
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Figure 2: PDF and CDF for the Soil Cleanup Targets for BaPeq (mg/kg) in Surface Soils. 
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Table 1 
Study Chemicals, Acronyms, and Synonyms 

cPAHs 

Study Chemical 

benz(a)anthracene 
benzo(a)pyrene 

benzo(b)fluoranthene 
benzo(k)fluoranthene 

chrysene 
dibenz(a,h)anthracene 

indeno(1,2,3-cd)pyrene 

Synonym 

1,2-benzophenanthrene 

2,3-phenylenepyrene 

CAS 
Number 

56-55-3 
50-32-8 

205-99-2 
207-08-9 
218-01-9 

53-70-3 
193-39-5 
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Table 2 
Physical and Chemical Properties of the Study Chemicals 

Study Chemical 

benz(a)anthracene 
benzo(a)pyrene 

benzo(b)fluoranthene 
benzo(k)fluoranthene 

chrysene 
dibenz(a, h)anth racene 

indeno(1,2,3-cd)pyrene 

Molecular 
Weight 

(g/mole) 

228 
252 
252 
252 
228 
278 
276 

Water 
Solubility 

(mg/l) 

5.70E-03 
1.20E-03 
1.40E-02 
4.30E-03 
1.80E-03 
5.00E-04 
5.30E-04 

Vapor 
Pressure 

(mm Hg) 

2.20E-08 
5.60E-09 
5.00E-07 
5.10E-07 
6.30E-09 
1.00E-10 
1.00E-10 

Henry's 
Law 

Constant 
(atm»m3/mol) 

1.16E-06 
1.55E-06 
1.19E-05 
3.94E-05 
1.05E-06 
7.33E-08 
6.86E-08 

Koc 

(-) 

1.38E+06 
5.50E+06 
5.50E+05 
5.50E+05 
2.00E+05 
3.30E+06 
1.60E+06 

Log 10 
Kow 

(-) 

5.60 
6.06 
6.06 
6.06 
5.61 
6.80 
6.50 

Note: 

All information from US EPA, 1988, Public Health Risk Evaluation Database, 
Office of Solid Waste & Emergency Response 
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Table 3 
Summary of Key Toxicologic Properties of the Study Chemicals 

Carcinogenic Toxicity by Ingestion 
' 

study Chemical 

benzo(a)anthracene 
benzo(a)pyrene 

benzo(b)fluoranthene 
benzo(k)fluoranthene 

chrysene 
indeno(1,2,3-c,d)pyrene 

Drinking Water 
Unit Risk 

(ng/i)-i 

2.10E-04 

Toxic 
Equivalency 

Factor 
(compared to 

B(a)P) 

1.00E-01 
1.00E+00 
1.00E-01 
1.00E-02 
1.00E-03 
1.00E-01 

Cancer 
Slope Factor 

(mg/(kg^))-1 

7.30E-01 
7.30E+00 
7.30E-01 
7.30E-02 
7.30E-03 
7.30E-01 

USEPA 
Weight of 
Evidence 

B2 
B2 
B2 
B2 
B2 
B2 

Species 
Tested 

mouse 
many 

mouse 
mouse 
mouse 
mouse 

Cancer 
Type 

tumors by multiple routes 
tumors by multiple routes 
tumors by multiple routes 
lung implantation tumors 
carcinomas, lymphomas 

tumors from lung implants 

R 
e 
f 

a 
a 
a 
a 
a 
a 

n 
0 

t 
e 

Sources: 
a US EPA, 1994, IRIS (May, 1994-January, 1995) 

Notes: 
[1] CSFs for non-B(a)P cPAH compunds were derived using the 

following equation: TEF (cPAH) • CSF (B(a)P) =CSF (cPAH); 
USEPA, 1993, PAH. 
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Table 3, continued 
Summary of Key Toxicologic Properties of the Study Chemicals 

Carcinogenic Toxicity by Inhalation 

Study Chemical 

benzo(a)anthracene 
benzo(a)pyrene 

benzo(b)fluoranthene 
benzo(k)fluoranthene 

chrysene 
indeno(1,2,3-c,d)pyrene 

Inhalation 
Unit Risk 

(ng/m3)-1 

Cancer 
Slope Factor 

(mg/(kg.d))-1 

7.30E-01 
7.30E+00 
7.30E-01 
7.30E-02 
7.30E-03 
7.30E-01 

USEPA 
Weight of 
Evidence 

B2 
B2 
B2 
B2 
B2 
B2 

Species 
Tested 

Cancer 
Type 

R n 
e 0 
f t 

e 

a 
a 
a 
a 
a 
a 
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Table 4 
US EPA's Weight-of-Evidence Classification for Carcinogens 

Human Evidence 

Sufficient 
Limited 

Inadequate 
No Data 

No Evidence 

Sufficient 

A 
B1 
B2 
B2 
B2 

Limited 

A 
B1 
C 
C 
C 

Animal Evidence 

Inadequate 

A 
B1 
D 
D 
D 

No Data 

A 
B1 
D 
D 
D 

No Evidence 

A 
B1 
D 
E 
E 

Group A = Human Carcinogen (sufficient evidence from epidemiologic studies) 

Group B1 = Probable Human Carcinogen (limited evidence from epidemiologic studies) 

Group B2 = Probable Human Carcinogen (sufficient animal evidence in absence of adequate human data) 

Group C = Possible Human Carcinogen (limited animal evidence in absence of adequate human data) 

Group D = Not Classifiable as to Human Carcinogenicity 

Group E = Evidence of Non-Carcinogenicity for Humans 

Source: US EPA, 51 FR 34000, September 24,1986 
Note: This classification scheme is currently under revision by the US EPA. 
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Table 5 
Estimated Order of Potential Potencies of Selected PAHs 

Based on Mouse Skin Carcinogenesis 

Compound 

benzo(a)pyrene 
benz(a)anthracene 

benzo(b)fluoroanthene 
benzo(k)fluoroanthene 

chrysene 
dibenz(a,h)anthracene 

indeno(1,2,3-cd)pyrene 

Relative 
Potency 

1.0 
0.1 
0.1 
0.01 

0.001 
1.0 
0.1 

Reference 

Bingham and Falk, 1969 
Habs etal., 1980 
Habs etal., 1980 
Wynder and Hoffmann, 1959 
Wynderand Hoffmann, 1959 
Habs etal., 1980; 
Hoffmann and Wynder, 1966 

Source: 
Provisional Guidance for Quantitative Risk Assessment 
of Polycyclic Aromatic Hydrocartjons 
US EPA, 1993, EPA/600/R-93/089 
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Table 6 
Summary of Exposure Scenarios to Estimate Health Risks 

Variable 

Conditions 
Type of receptor: 

Residents in Vicinity of Celotex Property 

current / future 
child 

current / future 
teenager 

current / future 
adult 

Age during exposure (yr): 
Average lifetime (yr): 

1 through 6 
70 

7 through 17 
70 

>18 
70 

Ingestion 

Inhalation 

Incidental Ingestion of soil 

Inhalation of fugitive dust 

Inhalation of soil vapors 

Q 

q 

NE 

q 

NE 

q 

NE 

Dermal 
Dermal contact with soils Q Q Q 

Notes: 
Q = Exposure pathway quantified 
q = Exposure pathway evaluated qualitatively 

NE = Exposure pathway not evaluated 
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Table 7 
Detailed Exposure Scenarios to Estimate Health Risks 

Oral Ingestion 

BaPeq - outdoor soli 
BaPeq - Indoor dust 
Transfer Coefficient 
Absorption Adjustment Factor' 
Soil Ingestion Rate-child 
Soil Ingestion Rata - teen 
Soil Ingestion Rate - adult 
Conversion factor (mg->kg) 
Conversion factor (m2->cni2) 
Body Weight-child 
Body Weight - teen 
Body Weight-adult 
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Exposure Frequency - outdoor 
Exposure Frequency • Indoor -
Exposure Frequency - outdoor 
Exposure FrequetKy - Indoor -
Days per Year 
Exposure Duration - child 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

Demnal Contact 

BaPeq - outdoor soil 
BaPeq - indoor dust 
Transfer Coefficient 
Absorption Adiustmenl Factor • 
Soil Adherence Rate 
Dust Adherence Rate 
Skin Surface Area - chikj 
Skin Surface Area - teen 
Skin Surface Area - adult 
Fraction of Skm Area Exposed 
Conversion factor (mg->kg) 
Conversion factor (m2->cfn2) 
Body Weight - child 
Body Weight - teen 
Body Weight-adult 
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Exposure Frequency • outdoor 
Exposure Frequency • indoor -
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Days per Year 
Exposure Duration - child 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

-oral 

-chiW 
child 
-teen 
teen 
-adult 
adult 

dermal 

-child 
child 
-teen 
teen 
-adult 
adult 

SoilBaPeq 
DustBaPeq 

TC 
AAFo 
SIRc 
SIRt 

SIRa 
CF 

CFs 
BWc 
BWt 

BWa 
EFOc 
EFIc 

EFOc 
EFIc 

EFOc 
EFIc 
dpy 
EDc 
EDt 

EDa 
Lifetime 

SoilBaPeq 
DustBaPeq 

TC 
AAFd 
SAH 
DAR 
SAC 
SAt 

SAa 
Frc 
CF 

CFs 
BWc 
BWt 

BWa 
EFOc 
EFIc 

EFOt 
EFH 

EFOa 
EFIa 
dpy 

EDc 
EDt 
EDa 

Lifetime 

Units 

mg/kg 
mg/kg 

-
-

mg/d 
mg/d 
mg/d 
kg/mg 

cm2/mZ 

itg 
Kfl 
kg 

(Vyr 
yr 
yr 
yr 
yr 

Unite 

mgrttg 
mgfltg 

-
-

mg/(cm2*d) 
mg/(cm2^) 

m2 
m2 
m2 

-
kg/mg 

cm2/m2 

kO 
kg 
kg 
d 
d 
d 
d 
d 
d 

d/yr 

yr 
yr 
yr 
yr 

Celotex's + AlliedSignal's Point Values 

Point Estimate 

100E-06 
100E+04 

350 

70 

Point Estimate 

0 25 
100E-06 
100E404 

350 

70 

RME (HEE) 

0 42 
0 27 
200 
100 
100 

16 4 
449 
70 
164 
186 
177 
173 
167 
183 

6 
11 
1 

RME (HEE) 

0 42 
002 

1 
0 2 

0 73 
15 
2 

164 
449 
70 
164 
186 
177 
173 
167 
183 

6 
11 
1 

Source 

A 
B 
C 
D 
E 
E 
E 

F 
F 
G 
H 
H 
H 
H 
H 
H 
1 
J 
J 
J 
K 

Source 

A 
B 
C 
0 
L 
M 
N 
N 
N 
O 

F 
F 
6 
H 
H 
H 
H 
H 
H 
1 
J 
J 
J 
K 

Distribution 

Distribution 

exp|N(-0 877,0 366)1 
B4(1,3.0 945.0 07) 
exp(N(4 13,0 8)1 
exp(N(3 44,0 8)1 
exp(N(3 44,0 8)1 

Constant 
Constant 

exp|N(2 69,0 33)1 
exp|N(3 75,0 37)1 

explN(4 263,0.206)1 
Custom 

Isimuiated) 
Custom 

(simulated] 
Custom 

[simulated) 
Point Estimate 

[simulated] 
[simulated] 
[simulated] 

Point Estimate 

Distribution 

exp[N(-0 877,0 366)1 

... 
exp|N(-1 71,1 01)) 
exp[N(-3 1,101)] 

[simulated] 
(simulated] 
[simulated] 

Point Estimate 
Constant 
Constant 

exp[N(2 69,0 33)] 
exp[N(3 75,0 37)1 

exp[N(4 263,0 206)1 
Custom 

[simulated] 
Custom 

[simulated] 
Custom 

(simulated] 
Point Estimate 

[simulated] 
[simulated] 
[simulated] 

Point Estimate 

Support 

(0,1) 
(0,1) 
(0 , - ) 
(0 , - ) 
(0,~) 

(0 , - ) 
(0 , - ) 
(0 , - ) 

Support 

(0,1) 
(0 , - ) 
(0,~) 
(0 , - ) 

(0 , - ) 
(0,~) 
(0 , - ) 

95th Percentile 

0 74 
066 

232 33 
116 48 
116 35 

25 35 
78 18 
99 69 
246 
254 
264 
245 
246 
255 

6 
11 

7084 

95th Percentile 

0 74 
0 07 

0 952 
0 24 

0 941 
1901 
2139 

25 35 
78 18 
99 69 
246 
254 
264 
245 
246 
255 

6 
11 

7 084 

Median 

0 42 
0 27 

62 18 
3122 
31 16 

14 73 
42 50 
7103 
164 
186 
177 
173 
167 
183 

3 2 
0 2 
0 1 

Median 

041 
002 

0181 
0 05 

0 629 
1336 
1808 

14 73 
42 50 
7103 
164 
186 
177 
173 
167 
183 

32 
0 2 
01 

• B4[1,5,0 147,01/84(4,1,0 397,0 603] 
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Table 7, continued 
Detailed Exposure Scenarios to Estimate Health Risks 

US EPA Region y s Point Values 

Oral Ingestion 

BaPeq - outdoor soil 
BaPeq-Indoor dust 
Transfer Coefficient 
Absorption Adjustment Factor 
Soil Ingestion Rate - child 
Soil Ingestion Rate - teen 
Soil Ingestion Rate - adult 
Conversion factor (mg->kg) 
Conversion factor (m2->cm2) 
Body Weight - child 
Body Weight - teen 
Body Weight-adult 
Exposure Frequency - outdoor 
Exposure Frequency - Indoor -
Exposure Frequency - outdoor 
Exposure Frequency - Indoor -
Exposure Frequency - outdoor 
Exposure Frequency - ndoor -
Days per Year 
Exposure Duration - chikJ 
Exposure Duration - teen 
Exposure Duration • adult 
Years In Lifetime 

Dennal Contact 

BaPeq - outdoor soil 
BaPeq - Indoor dust 
Transfer Coeffiaent 
Absorption Adiustment Factor -
Soil Adherence Rate 
Dust Adherence Rate 
Skin Surface Area - child 
Skin Surface Area - teen 
Skin Surface Area - adult 
Fraction of Skin Area Exposed 
Conversion factor (mg->kg) 

Body Weight-chikJ 
Body Weight - teen 
Body Weight - adult 
Exposure Frequency - outdoor 
Exposure Frequency - Indoor -
Exposure Frequency - outdoor 
Exposure Frequency - Indoor -
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Days per Year 
Exposure Duration - child 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

•oral 

-chlkj 
child 
-teen 
teen 
-adult 
adult 

dermal 

-chikJ 
chlkj 
-teen 
teen 
-adult 
adult 

SoilBaPeq 
DustBaPeq 

TC 
AAFo 
SIRc 
SIRt 

SIRa 
CF 

CFs 
BWc 
BWt 

BWa 
EFOc 
EFIc 

EFOc 
EFIc 

EFOc 
EFIc 
dpy 

EDc 
EDt 

EDa 
Lifetime 

SoilBaPeq 
DustBaPeq 

TC 
AAFd 
SAR 
DAR 
SAc 
SAt 

SAa 
Frc 
CF 

CFs 
BWc 
BWt 

BWa 
EFOc 
EFIc 

EFOt 
EFIt 

EFOa 
EFIa 
dpy 
EDc 
EDt 

EDa 
Lifetime 

Units 

mgrttg 
mgAg 

mg/d 
mg/d 
mg/d 
kg/mg 

cm2/m2 
kg 
kg 
kg 
d 
d 
d 
d 
d 
d 

d/yr 

yr 
yr 
yr 
yr 

Units 

mgfltg 
mgrtig 

. 
-

mg/(cm2Hj) 
mg/(cm2^) 

m2 
m2 
m2 

. 
kg/mg 

cm2/m2 
kg 
kg 
kg 
d 
d 
d 
d 
d 
d 

d/yr 

yr 
yr 
yr 
yr 

Point Estimate default RME 

0 42 
0 9 
200 
200 

too 
100E-06 
100E+04 

15 
45 
70 

350 
0 

350 
0 

350 
0 

365 
6 
11 
13 
70 

Point Estimate default RME 

na 
015 

1 
na 

0 73 
15 
2 

0 25 
100E-06 
100E4O4 

15 
45 
70 

350 
0 

350 
0 

350 
0 

365 
6 
11 
13 
70 

Source 

AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 

Source 

AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
AA 
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Table 7, continued 
Detailed Exposure Scenarios to Estimate Health Risks 

Ecology & Environment's Report 

Source 

A (the goal of the calculations) 
B calculated from transfer coefficient 
C Trowbndge & Burmaster, 1996 
D Magee etal, 1996 
E Thompson & Burmaster, 1991, UD EPA, 1995, EFIH2, UGoy, 
F Burmaster et al, 1994, Burmaster & Crouch, 1996 
G Brainard a Burmaster, 1992, US EPA, 1995, EFH2 
H Ak:eon - see Appendix XXX 
I US EPA, 1989, HHEM 
J Alceon-see Appendix XXX 
K US EPA, 1989, HHEM 
L US EPA, 1992, Dermal 
M Kissel et al, 1996, US EPA, 1992, Dermal 
N Murray & Bumiaster, 1992, US EPA, 1995, EFH2 
O Ecology & Environment, October 1995 

AA Ecology & Environment, October 1995 
and discussions with Staff Members of US EPA's Region V 
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Table 8 
Exposure Frequency as a Function of Temperature 

32 degF 40 degF 50 degF 60 degF 70 degF 

N days at or above 

N days below 

child 

teen 

adult 

282 

83 

0.00 

0.00 

0.00 

246 

119 

0.05 

0.10 

0.05 

196 

169 

0.20 

0.30 

0.25 

143 

??? 

0.70 

0.85 

0.70 

86 

279 

1.00 

1.00 

1.00 

checksum 365 365 365 365 365 
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Dose Formulae A, 169.03 - 2800 S. Sacramento Site 

Table 9 
Formulae Used to Estimate Doses and Risk 

1. Formula for Average Daily Dose for a Day of Exposure - ADD (day) - Ingestion of Soil or Dust 

. n r . . H . i J ^ ^ B P C ( g f ) . . n g R ( ^ ) . C F . . ( l O - e ^ ) . o A A F 
ADD (day) ( ^ ^ ) = ^ 

where: 
ADD (day) 
EPC 
IngR 
CFkm 
oAAF 
BW 

BW (kg) 

Average Daily Dose for a Day of Exposure via Ingestion 
Acceptable Exposure Point Concentration of Study Chemical in Soil or Dust 
Average Incidental Ingestion Rate 
Conversion Factor for kg to mg 
Oral Absorption Adjustment Factor 
Body Weight 

2. Formula for Average Daily Dose for a Day of Exposure - ADD (day) - Dermal Contact with Soil or Dust 

A D D ( d ) ( ^ ) = 
EPC ( g ^ ) » AdhR ( ^ ^ ) » SA (m2) » FracExp » CFkm ( i p e ^ ) « CFcm ( 10^ - g g ^ ) • dAAF 

where: 
ADD (d) 
EPC 
AdhR 
SA 
FracExp 
CFkm 
CFcm 
dAAF 
BW 

BW (kg) 

Average Daily Dose for a Day of Exposure via Dermal Contact 
Average Concentration of Study Chemical in Soil or Dust 
Adherence Rate of Soil on Skin 
Surface Area of Body 
Fraction of Body Exposed 
Conversion Factor for kg to mg 
Conversion Factor for cm2 to m^ 
Dermal Absorption Adjustment Factor 
Body Weight 
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Dose Formulae A.169.03 - 2800 S. Sacramento Site 

3. Formula for Average Daily Dose for a Lifetime of Exposure - ADD (life) 

ADD (lite) ( ^ ) = ADD (day) ( ^ ) • E F ( ^ )• CFd, ( ^ ^ ) 

where: 
ADD (life) = 
ADD (day) = 
EF 
CFdy 

Average Daily Dose for a Lifetime of Exposure 
Average Daily Dose for a Day of Exposure 
Frequency of Exposure in Life Stage 
Conversion Factor for d to yr 

4. Formula for Total Average Daily Dose - ADD (total) 

ADD (total) ( ^ ) = X ( A D D (life) ( ^ ) • ED(yr) ) • ( 
1 

where: 
kg 

ADD (total) = 
ADD (life) = 
ED 
CFdy 
Lifetime = 

Lifetime 

Total Average Daily Dose 
Average Daily Dose for a Lifetime of Exposure 
Duration of Exposure in Life Stage 
Conversion Factor for d to yr 
Years in Lifetime 
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Table 10 

Va r i ab le 

BaPeq - outdoor soli 
Transfer Coefficient 
BePeq - indoor dust 

Child 
age: 1 throu 

SoilBaPeq [=SoilBaPeq 

TC =TC 
DustBaPeq cOustBaPeq 

Teen 
age: 7 throu 

Adult 
•ae: 18 thro 

[ ] SoilBaPeq [=SoilBaPeq"~ 

TC =TC 
DustBaPeq ^DustBaPeq 

[]SoilBaPeq |27 5 

TC 0 42 
DustBaPeq =TC*SoilBaPeq 

Units 

J mg/kg 
dimensionless 

Soil Ingestion Rate SIRc 
Absorption Adjustment Factor - oral AAFo 
Average Daily Dose (day) • oral -outdoor OADIX}c 
Average Daily Dose (day) - oral • indoor OADDIc 

Soil Adherence Rate SAR 
Dust Adherence Rate DAR 
Skin Surface Area SAc 
Fraction ol Skin Area Exposed - outdoor FrtOc 
Fraction of Skin Atea Exposed - Indoor Frcic 
Absorption Adjustment Factor • dermal AAFd 
Average Daily Dose (day) - dermal - outdoor DADDOc 
Average Daily Dose (day) - dermal - irnjoor DADDIc 

Body Weight 
Ccnversion factor (mg->kg) 
Conversion factor (m2->cm2) 

Number of Days near Celotex 
Exposure Frequency - outdoor 
Exposure Frequency - Indoor 

Exposure Duration 

Days per Year 
Years in Lifetime 
Averaging time 

=IF(M13^,013,P13) 
=AAFo 
=SoilBaPeq'AAFo*SIRc*CF/BWc 
-DustBaPeq* AAFo*SIRc*CF/BWe 

=SAR 
=DAR 
=IF(M41=0,O41,P41) 
025 
025 
=AAFd 

SIRt 
AAFo 
OADDOt 
OADDIt 

SAR 
DAR 
SAt 
FrcOt 
Frc It 
AAFd 

=(SoilBaPeq*AAFd'SAR"SAc*FrcOc*CF*CFs)/BWc DADDOt 
=(DustBaPeq"AAFd*DAH'SAc*Frclc*CF'CFs)/BWc DADDIt 

BWc 
CF 
CFs 

DayCc 
EFOc 
EFIc 

EDc 

dpy 
LHetime 
AT 

•=IF(M18=0,O18,P18) 
=CF 
=CFs 

350 
164 
=DayCc-EFOc 

=IF(M28=0,O28,P28) 

=dpy 
=a.i1etime 
=AT 

=IF(M14«0,014,P14) 
oAAFo 
=SoilBaPeq*AAFo*SiRfCF/BWt 
cOustBaPeq*AAFo*SIRfCF/BWt 

=SAR 
^ A R 
i=IF(M42=0,O42,P42) 
0 2S 
0 25 
WlAFd 
=(SoilBaPeq*AAFd*SAR*SAfFrcOfCF*CFs)/BWt 
-(DustBaPeq'AAFd*DAR*SAfFrclt*CF'CFs)/BWt 

BWt 
CF 
CFs 

DayCt 
EFOt 
EFIt 

EDt 

dpy 
Lifetime 
AT 

=IF(M19=0,O19,P19) 
=CF 
=CFs 

350 
177 
-OayCt-EFOt 

=iF(M2g=0,O29,P29) 

=dpy 
i4Jfetime 
=AT 

SIRa 
AAFo 
OADDOa 
OADDIa 

SAR 
DAR 
SAa 
FicOa 
FrcIa 
AAFd 
DADDOa 
DADDIa 

BWa 
CF 
CFs 

DayCa 
EFOa 
EFIa 

EDa 

dpy 
Lifetime 
AT 

=IF(M 15=0,015,P 15) 
=IF(M12=0,O12,P12) 
=SorlBaPeq-AAFo-SIRa'CF/BWa 
=DustBaPeq*AAFo-SIRa-CF/BWa 

=IF(M39=0,O39,P39) 
=IF(M40=0,O40,P40) 
=IF(M43=0,O43,P43) 
025 
0 25 
=IF(M38=0,O38,P38) 
=(SoilBaPeq'AAFd-SAR*SAa*FrcOa*CF*CFs)ffiWa 
=(DustBaPoq*AAFd*DAR*SAa-Frcla*CF*CFs)/BWa 

=IF(ll«20=0,O20,P20) 
0 000001 
10000 

350 
167 
=DayCa-EFOa 

=IF(M30=0,O30,P30) 

365 
70 
=Lifetime*dpy 

mg/day 
dimensionless 
mg/(kg^jay) 
mg/{kg^ay) 

mg/(cm2«d) 
mg/(cm2«d) 
cm2 

-
dimensionless 
mgUHg-aay) 
mg/(kgn)ay) 

kg 
kg/mg 
cm2/m2 

day/yr 
day/yr 
day/yr 

yr 

day/yr 

yr 
day 

Average Daily Dose(lifetime) - oral OADDIc =(0ADD0c'EF0c+OADDIc'EFIc)/dpy 
Total Average Daily Dose • oral 

OADDIt c(OADDOfEFOt'lOADDIt'EFIt)/dpy OADDIa 
OADD 

=(OADDOa*EFOa+OADDIa*EFIa)/dpy mg/(kg^iay) 
=(EDc*OADDlC'i'EDt'OADDit+EDa'OADDIa)/Lifetime mg/(kg^ay) 

Average Daily Dose(lifetime) - dermal DADDk; =(DADDOc'EFOc+DADDIc*EFIc)/dpy 
Total Average Daily [>ose - dermal 

DADDIt =(DADDOfEFOt+DADDirEFtt)/dpy DADDIa 
DADD 

=(DADDOa*EFOa+DADDIa'EFIa)/dpy mg^(kg^jay) 
=(EDc'DADDIC'i'EDt*DADDIt+EDa'DADDIa)A.ifetime mg/(kgnlay) 

Cancer Slope Factor - ingestion CSF =CSF CSF =CSF CSF 73 (kg^ay)/mg 

Incremental Lifetime Cancer Risk - oral 
incremental Lifetime Cancer Risk - dernial 

Incremental Lifetime Cancer Risk - Total 

ILCRo 
ILCRd 

ILCR 

=OADD*CSF 
=DADD'CSF 

=ILCRo+ILCRd 
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Table 10 

Oral Ingestion 

BaPeq - outdoor soil 

BaPeq - indoor dust 
Transfer Coefficient 
Absorptkxi Adjustment Factor • 
Soil Ingestion Rate - child 
Soil Ingestion Rate - teen 
Soil Ingestion Rate - adult 
Converskin factor (mg->kg) 
Conversion factor (m2->cm2) 
Body Weight-child 
Body Weight-teen •"-
Body Weight-adult 
Exposure Frequency - outdoor 
Exposure Frequency - Indoor -
Exposure Frequency - outdoor 
Exposure Frequency - indoor • 
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Days per Year 
Exposure Duration - chikl 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

Dermal Contact 

BaPeq - outdoor soil 
BaPeq - indoor dust 
Transfer Coefficient 
AbsorpUon Adjustment Factor • 
Soil Adherence Rate 
Dust Adherence Rate 
Skin Surface Aiea - child 
Skin Surtace Area - teen 
Skin Surtace Area - adult 
Fraction of Skin Area Exposed 
Conversion factor (mg->kg) 
Conversion factor (m2->cm2) 
Body Weight - chikl 
Body Weight - teen 
Body Weight-adult 
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Exposure Frequency - outdoor 
Exposure Frequency - indoor -
Days per Year 
Exposure Duration - child 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

-oral 

- child 
chlkj 
-teen 
teen 
- adult 
adult 

deimal 

-chiM 
child 
-teen 
teen 
- adult 
adult 

SoilBaPeq 

DustBaPeq 
TC 
AAFo 
SIRc 
SIRt 
SIRa 
CF 
CFs 
BWc 
BWt 
BWa 
EFOc 
EFIc 
EFOc 
EFIc 
EFOc 
EFIc 

dpy 
EDc 
EDt 
EDa 
Lifetime 

SoilBaPeq 
DustBaPeq 
TC 
AAFd 
SAR 
DAR 
SAc 
SAt -
SAa 
Frc 
CF 
CFs 
BWc 
BWt 
BWa 
EFOc 
EFIc 
EFOt 
EFIt 
EFOa 
EFIa 
dpy 
EDc 
EDt 
EDa 
Lifetime 

Toflflle 

1 
1 
=M13 
=mA 

|1 1 
=M18 
<:M19 

h 1 
i=M21 
-M22 
'=M23 
=M24 
=M25 

h 1 
°M28 
=M29 

=M12 

|1 1 
=M39 

|1 1 
=M41 
=M42 

=M18 
=M19 
i=M20 
=M21 
=M22 
=M23 
=M24 
=M25 
=M26 

=M28 
=M29 
=M30 

CT 
Toggle 0 
Mod ton 

0.42 
0.27 
62 
31 
31 

14 7 
42 5 
71 
164 
186 
177 
173 
167 
183 

3 2 
0 2 
0 1 

Mod ion 

0.42 
0.02 
0181 
0 045 
063 
134 
18 

14 7 
42 5 
71 
164 
186 
177 
173 
167 
183 

32 
0 2 
0 1 

RME 
Toggle 1 

0.42 
0.27 
200 
100 
100 

164 
44 9 
70 
164 
=350-P21 
177 
=350-P23 
167 
=350-P25 

6 
11 , 
1 

n f i t h 1 * • ' -
UDUI p U I U U I l t l l U 

0.42 
0.02 
1 
0 2 
0 73 
15 
2 

16 4 
44 9 
70 
164 
=350-P50 
177 
=350-P52 
167 
=350-P54 

6 
11 
1 

Point EsUmate 

0.42 

0 000001 
10000 

350 

70 

Point Estimate 

0.42 

0 25 
0 000001 
KXXXI 

350 

70 

Units 

mg*g 

mgrtig 

-
-
mg/d 
mg/d 
mg/d 
kg/mg 
cm2/ni2 
kg 
kg 
kg 

d/y 

Units 

mgfltg 
mg/kg 

. 

. 
mg/(cm2*d) 
mg/(cm2»d) 
m2 
m2 
m2 

kg/mg 
cm2/m2 

kg 
kg 
kg 

d/y 

25 Oct 96 Page 2 Alceon & 



T11Det5ASHEEV A 169 03 - 2800 S Sacramento 

Table 11 
Estimated Detemninistic RBCG 

RME (HEE) - Celotex + AlliedSignal 

Variable 

BaPeq - outdoor soil 
Transfer CoeffKient 
BaPeq - indoor dust 

Soil Ingestion Rate 
Absorption Adjustment Factor - oral 
Average Daily IXise (day) - oral -outdoor 
Average Daily Dose (day) - oral - indoor 

Soil Adherence Rate 
Dust Adherence Rate 
Skin Surface Area 
Fraction ol Skin Area Exposed - outdoor 
Fraction of Skin Area Exposed - indoor 
Absorption Adjustment Factor • dermal 
Average Daily Dose (day) - dermal - outdoor 
Average Daily Dose (day) - dermal - indoor 

Body Weight 
Conversion factor (mg->kg) 
ConversK>n factor (m2->cm2) 

Number of Days near Celotex 
Exposure Frequency - outdoor 
Exposure Frequency - indoor 

Exposure Duration 

Days per Year 
Years in Lifetime 
Averaging time 

Average Daily Dose(lifetime) - oral 
Total Average Daily Dose - oral 

Average Daily Dose(lifetlme) - dermal 
Total Average Dally Dose • dermal 

Cancer Stope Factor - ingestion 

Incremental Lifetime Cancer Risk - oral 
Incremental Lifetime Cancer Risk - dermal 

incremental Lifetime Cancer Risk - Total 

Child 
age: 1 through 6 yr 

SollBaPeq| 

TC 
DustBaPeq 

SIRc 
AAFo 

OADDOc 
OADDIc 

SAR 
DAR 
SAc 

FreOc 
FrcIO 

AAFd 
DADDOc 
DADDk: 

BWc 
CF 

CFs 

DayCc 
EFOc 
EFIc 

EDc 

dpy 
Utetime 

AT 

OADDIc 

DADDk; 

CSF 

age 

27 5001 
0 420 

11550 

200 000 
0 270 

0 05E-05 
3 80E-O5 

1000 
0200 
0 730 
0250 
0250 
0020 

6 12E-05 
514E-06 

16.400 
100E-06 

100E+04 

350 
164 
186 

6000 

365 
70 

25550 

6 01E-O5 

3 01E-05 

7.30 

Teen 
7 through 17 yr 

SollBaPeq| 

TC 
DustBaPeq 

SIRt 
AAFo 

OADDOt 
OADDIt 

SAR 
DAR 
SAt 

FrcOt 
Frcit 

AAFd 
DADDOt 
DADDIt 

BWt 
CF 

CFs 

DayCt 
EFOt 
EFIt 

EDt 

dpy 
Lifetime 

AT 

OADDIt 

DADDIt 

CSF 

age: 

27 5001 
0 420 

11550 

100 000 
0 270 

1 65E-05 
6 95E-06 

1000 
0200 
1500 
0250 
0250 
0 020 

4 59E-05 
3 86E-06 

44 900 
100E-06 

100E+04 

350 
177 
173 

11000 

365 
70 

25550 

1 13E-05 

2 41E-05 

730 

Adult 
IS through 70 yr 

SoilBaPeq 

TC 
DustBaPeq 

SIRa 
AAFo 

OADDOa 
OADDIa 

SAR 
DAR 
SAa 

FrcOa 
FrcIa 

AAFd 
DADDOa 
DADDIa 

BWa 
CF 

CFs 

DayCa 
EFOa 
EFIa 

EDa 

dpy 
Lifetime 

AT 

OADDIa 
OADD 

DADDIa 
DADD 

CSF 

ILCRo 
ILCRd 

ILCR 

1 27 500 
0 420 

11550 

100 000 
0 270 

1 06E-05 
4 46E-06 

1000 
0 200 
2000 
0250 
0 250 
0 020 

3 93E-05 
3 30E-06 

70 000 
100E-06 
100E-fO4 

350 
167 
183 

1000 

365 
70 

25550 

7 09E-06 
7 03E-06 

1 96E-05 
6 65E-06 

730 

5 13E-05 
4 85E-05 

9 98E-05 

Units 

1 mg/kg BaPeq 

dimensionless 

mg/day 
dimensionless 

mg/(kgn1ay) 
mg/(kgnlay) 

mg/(cm2«d) 
mg/(cm2«d) 

cm2 

dimensionless 
mg/(kgMay) 
nV(kgHlay) 

kg 
kg/mg 

cm2/m2 

day/yr 
day/yr 
day/yr 

yr 

day/yr 
yr 

day 

mg/(kg'day) 
mg/(kgnJay) 

mg/(kgn1ay) 
mg/(kg-day) 

(kg^ay)/mg 
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T i l Det5ASHEEV A 169 03 -2800S Sacramento 

Table 11 
Estimated Deterministic RBCG 

RME (HEE) - Celotex + AllledSignal 

Oral Ingestion Toggle 

BaPeq - outdoor soil 

BaPeq - indoor dust 
Transfer Coefficient 
/Absorption Adjustment Factor - oral 
Soil Ingestion Flate • chiM 
Soil Ingestion Rate - teen 
Soil Ingestion Rate - adult 
Converskm factor (mg->kg) 
Converston factor (m2->cm2) 
Body Weight-child .. 
Body Weight - teen 
Body Weight • adult '-
Exposure Frequency - outdoor - child 
Exposure Frequency • indoor - chijd ~ 
Exposure Frequency - outdoor - taan 
Exposure Frequency - indoor - teen' 
Exposure Frequency • outdoor - adult 
Exposure Frequency - Indoor - adult 
Days per Year 
Exposure Duration • child 
Exposure Duration - teen 
Exposure Duration • adult 
Years In Lifetime 

Dermal Contact , ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

BaPeq - outdoor soil 
BaPeq - indoor dust 
Transfer Coefficient 
Absorption Adjustment Factor - dermal 
Soil AdhererKe Rate 
Dust Adherence Rate 
Skin Surtace Area - chikj 
Skin Surtace Area - teen 
Skin Surtace Area • adult 
Fraction of Skin /Area Exposed 
Conversion factor (mg->kg) 
ConversKXi factor (m2->cm2) 
Body Weight - child 
Body Weight - teen 
Body Weight - adult 
Exposure Frequency - outdoor - child 
Exposure Frequency - indoor - child 
Exposure FrequerKy - outdoor - teen 
Exposure Frequency - Indoor - teen 
Exposure Frequency - outdoor - adult 
Exposure Frequency - indoor - adult 
Days per Year 
Exposure Duration - child 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

SoilBaPeq 

DustBaPeq 
TC 

AAFo 
SIRc 
SIRt 

SIRa 
CF 

CFs 
BWc [ 
BWt 

BWa 
EFOc [ 
EFIc 

EFOc 
EFIc 

EFOc 
EFIc 

tipy , 
EDc [ 
EDt 

EDa 
'Lifetime 

SoilBaPeq 
DustBaPeq 

TC 
AAFd 
SAR 
DAR 
SAc 
SAt 

SAa 
Frc 
CF 

CFs 
BWc 
BWt 

BWa 
EFOc 
EFIc 

EFOt 
EFIt 

EFOa 
EFIa 
dpy 
EDc 
EDt 
EDa 

Lifetime 

CT 

Toggle 0 
Modl f ln 

0.42 
0.27 
62 
31 
31 

147 
42 5 
71 
164 
186 
177 
173 
167 
183 

3 2 
0 2 
0 1 

Modion 

0.42 
0.02 

0181 
0 045 
063 
134 
16 

14 7 
42 50 

71 
164 
186 
177 
173 
167 . 
183 

3 2 
0 2 
0 1 

HEE 
Toggle 1 

0.42 
0.27 
200 
100 
100 

16 4 
44 9 
70 
164 
186 
177 
173 
167 
183 

6 
11 
1 

0.42 
0.02 

1 
0 2 

0 73 
15 
2 

164 
449 
70 

164 
186 
177 
173 
167 
183 

6 
11 
1 

Point Estimate 

0.42 

100E-06 
100E+04 

350 

, 
70 

Point Estimate 

0.42 

0 25 
100E-06 
100E4O4 

350 

70 

Units 

mg/kg 

mg*g 

-
mg/d 
mg/d 
mg/d 
kg/mg 

cm2/m2 
kg 
kg 
kg 
d 
d 
d 
d 
d 
d 

d/y 

y 
y 
y 
y 

Units 

mg/kg 
mg/kg 

-
-

mg/(cm2>d) 
mg/(cm2«d) 

m2 
m2 
m2 

kg/mg 
cm2/m2 

kg 
kg 
kg 
d 
d 
d 
d 
d 
d 

d/y 

y 
y 
y 
y 
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T12 Det 5 E&E R M E V A 169 03 - 2800 S Sacramento 

Table 12 
Estimated Deterministic RBCG 

Default RME • US EPA Region V 

Var iab le 

BaPeq - outdoor soil 
Transfer CoeffKient 
BaPeq - indoor dust 

Soil Ingestion Rate 
Absorption Adjustment Factor - oral 
Average Daily Dose (day) • oral -outdoor 
Average Daily Dose (day) - oral - Indoor 

Soil Adherence Rate 
Dust Adherence Rate 
Skin Surtace Area 
Fraction of Skin Area Exposed - outdoor 
Fraction ol Skin Area Exposed - Indoor 
/Absorption Adjustment Factor - dennal 
Average Daily [}ose (day) - dermal • outdoor 
Average Daily Dose (day) - dermal - indoor 

Body Weight 
Conversion factor (mg->kg) 
Conversion factor (m2->cm2) 

Number of Days near Celotex 
Exposure Frequency - outdoor 
Exposure Frequency - indoor 

Exposure Duration 

Days per Year 
Years In Lifetime 
Averaging time 

Average Daily IX)se(lifetlme) - oral 
Total Average Daily Dose - oral 

Average Daily Dose(lifetime) - dermal 
Total Average Daily Dose - demnal 

Cancer Slope Fector - ingestion 

Incremental Lifetime Cancer Risk - oral 
incremental Lifetime Cancer Risk - dermal 

Incremental Lifetime Cancer Risk - Total 

Child 
age: 1 through 6 yr 

SollBaPeq| 

TC 
DustBaPeq 

SIRc 
AAFo 

OADDOc 
OADDIc 

SAR 
DAR 
SAc 

FrcOc 
Frck: 

AAFd 
DADDOc 
DADDk: 

BWc 
CF 

CFs 

DayCc 
EFOc 
EFIc 

EDc 

dpy 
Lifetime 

AT 

OADDIc 

DADDk: 

CSF 

Teen 
age: 7 through 17 yr 

1930| 
0 420 
0811 

200 000 
0900 

2 32E-05 
9 73E.06 

1000 
1.000 
0.730 
0 250 
0 250 
0.150 

3 52EH)5 
148E-05 

15000 
100E-06 
lOOE-KM 

350 
350 

0 

6000 

365 
70 

25550 

2 22E-05 

3 38E-05 

730 

SollBaPeq| 

TC 
DustBaPeq 

SIRt 
AAFo 

OADDOt 
OADDIt 

SAR 
DAR 
SAt 

FrcOt 
FrcIt 

AAFd 
DADDOt 
DADDIt 

BWt 
CF 

CFs 

DayCt 
EFOt 
EFIt 

EDt 

dpy 
Lifetime 

AT 

OADDIt 

DADDIt 

CSF 

age 

1930| 
0 420 
0811 

200000 
0900 

7.72E-06 
3 24E-06 

1000 
1000 
1500 
0250 
0250 
0150 

2 41E-05 
1 01E-05 

45 000 
100E-06 
100E+O4 

350 
350 

0 

11000 

365 
70 

25550 

7 40E-06 

2 31E-05 

730 

Adult 
18 through 70 yr 

SoilBaPeq 

TC 
DustBaPeq 

SIRa 
AAFo 

OADDOa 
OADDIa 

SAR 
DAR 
SAa 

FrcOa 
FrcIa 

AAFd 
DADDOa 
DADDIa 

BWa 
CF 

CFs 

DayCa 
EFOa 
EFIa 

EDa 

dpy 
Lifetime 

AT 

OADDIa 
OADD 

DADDIa 
DADD 

CSF 

ILCRo 
ILCRd 

ILCR 

1 193C 

0 420 
0811 

100000 
0900 

2 48E-06 
104E-06 

1000 
1000 
2.000 
0 250 
0 250 
0150 

2 07E-05 
8 69E-06 

70 000 
100E-06 

100E4O4 

350 
350 

0 

13 000 

365 
70 

25550 

2 38E-06 
3 51E-06 

1 98E-05 
102E-05 

730 

2 56E-05 
7 46E-05 

iooe-o4 

Units 

1 mg/kg BaPeq 

dimensionless 

mg/day 
dimensionless 

mg/(kg.day) 
mg/(kg^1ay) 

mg/{cm2«d) 
mg/(cm2'd) 

cm2 

dimensionless 
mg/(kg^y) 
mg/(kg^toy) 

kg 
kg/mg 

cm2/m2 

day/yr 
day/yr 
day/yr 

yr 

day/yr 

yr 
day 

mg/(kg^ay) 
mg/(kg^tey) 

m9/(kg^Jay) 
mg/(kg^day) 

(kg^ay)/mg 
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T12 Det 5 E&E RMEV A 169 03 -2800S Sacramento 

Table 12 
Estimated Deterministic RBCG 

Default RME • US EPA Region V 

Oral Ingestion 

BaPeq - outdoor soil 

BaPeq - indoor dust 
Transfer Coefficient 
/Absorption Adjustment Factor • oral 
Soil Ingestion Rate - chikl 
Soli IngestKHi Rate - teen 
Soil Ingestion Rate - adult 
Converston factor (mg->kg) 
Conversk)n factor (m2->cm2) 
Body Weight-child 
Body Weight-teen 
Body Weight-adult ; . . 
Exposure Frequency - outdoor - child ; -
Exposure Frequency - indoor - chlkj, f; ° ' ' 
Exposure Frequency - outdoor - teen - , ' ' ' 
Exposure Frequency - indoor - teen -^^': 
Exposure Frequency - outdoor - adult .. 
Exposure Frequency - indoor - adult 
Days per Year - J ' ^ ^ 
Exposure Duration - chiU 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

Dennal Contact 

BaPeq - outdoor soil 
BaPeq - indoor dust 'i 
Transfer Coefficient 
Absorption Adjustment Factor - dennal 
Soil /Adherence Rate 
Dust Adherence Rate 
Skin Surtace Area • child 
Skin Surtace Area - teen 
Skin Surtace Area - adult 
Fraction of Skin Area Exposed 
Conversion factor (mg->kg) 
Conversion factor (m2->cm2) 
Body Weight-child 
Body Weight-teen 
Body Weight-adult 
Exposure Frequency - outdoor - child 
Exposure Frequency - indoor - chikJ 
Exposure Frequency - outdoor - teen 
Exposure Frequency - indoor - teen 
Exposure FrequerKy - outdoor • adult 
Exposure Frequency - indoor - adult 
Days per Year 
Exposure Duration - child 
Exposure Duration - teen 
Exposure Duration - adult 
Years in Lifetime 

CT 
Toggle 0 

Toggle Medien 

SoilBaPeq 

DustBaPeq 
TC 

AAFo 
SIRc 
SIRt 

1 
1 
1 

0 42 
0 9 
too 
100 

SIRa 1 50 
CF 

CFs 
BWc 
BWt 

BWa 
EFOc 
EFIc 

1 

1 

15 
45 
70 

260 
90 

EFOc 1 260 
' EFIc 1 90 
EFOc 1 260 
EFIc 1 90 

, dpy 
• - £ D c 

- EDt 
1 
1 

365 
6 
2 

. ' . EDa 1 9 
LHetime 70 

CT 

SoilBaPeq 
DustBaPeq 

TC 0 42 
AAFd 
SAR 
DAR 
SAC 
SAt 

1 

1 
1 

1 
1 

015 
0 2 
0 2 

0 73 
15 

SAa 1 2 
Frc 
CF 

CFs 
BWc 1 15 
BWt 1 45 

BWa 1 70 
EFOc 1 260 
EFIc 1 90 

EFOt 1 260 
EFIt 1 90 

EFOa 1 260 
EFIa 1 90 
dpy 365 

EDc 1 6 
EDt 1 2 

EDa 1 9 
Lifetime 70 

RME 

Toggle 1 

0 42 
0 9 
200 
200 

too 

15 
45 
70 

350 
0 

350 
0 

350 
0 

365 
6 
11 
13 
70 

RME 

0 42 
015 

1 
1 

0 73 
15 
2 

15 
45 
70 

350 
0 

350 
0 

350 
0 

365 
6 
11 
13 
70 

Pomt Estimate 

0.42 

100E-06 
100E+04 

350 

70 

Point Estimate 

0.42 

0 25 
100E-06 
100E+04 

350 

70 

Units 

mgflcg 

mg/kg 

-
mg/d 
mg/d 
mg/d 

kg/mg 
cm2/m2 

kg 
kg 

kg 
d 
d 
d 
d 
d 
d 

d/y 

y 
y 
y 
y 

Units 

mg/kg 
mgrttg 

-
-

mg/(cm2«d) 
mg/(cm2<d) 

m2 
m2 
m2 

kg/mg 
cm2/m2 

kg 
kg 
kg 

dV 
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Tx.Prob.e .SYLK 

Crystal Ball® Simulation 
Started on Thu, May 30,1996 at 19:24:07 

Stopped on Thu, May 30,1996 at 20:41:50 

Forecast: SoilBaPeq Cell: G i l 

Summary: Certainty Level is 100.00% based on Entire Range 
Certainty Range is from -oo to « mg/kg 
Display Range is from 0.000 to 100.000 mg/kg 
Entire Range is from 0.473 to 99.474 mg/kg 
After 20,000 Trials, the Std. Error of the Mean is 0.15 

Statistics: 
Trials 
Percent of Other 
Mean 
Median 
Mode 
Standard Deviation 
Variance 
Skewness 
Kurtosis 
Coeff. of Variability 
Range Width 
Range Minimum 
Range Maximum 
Mean Std. Error 

DisDiav Ranae 
20,000 
100.00 
27.118 
20.843 

7.500 
21.120 

446.063 
1.23 
4.02 

77.88 
100.000 

0.000 
100.000 

0.15 

Entire Range 
20,000 
100.00 
27.118 
20.843 

7.500 
21.120 

446.063 
1.23 
4.02 

77.88 
99.001 

0.473 
99.474 

0.15 

Cell G11 
.03 

Forecast: SoilBaPeq 
Frequency Distribution 

X3 
CD 

O 

.03 

.02 

.01 

.00 

20000 Trials 
6 6 7 

lllll|llllnlllllifn 

5 0 0 

(D 

3 3 4 c 
(D 

167 
o 

0 .000 25 .000 50 .000 
mg/kg 

75.000 100.000 
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Forecast: SoilBaPeq (Cont'd) Cell: G i l 

Percentiles for Entire Range (mg/kg): 

Percentile SoilBaPeq 
0% 0.473 

10% 6.355 
20% 9.470 
30% 12.781 
40% 16.409 
50% 20.844 
60% 26.058 
70% 33.256 
80% 42.569 
90% 58.164 

100% 99.474 

End of Forecast 
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Forecast: loglOILCRo Cell: G71 

Summary: Certainty Level is 100.00% based on Entire Range 
Certainty Range is from -oo to oo loglOprob 
Display Range is from -8.00E+0 to -2.OOE-1-O loglOprob 
Entire Range is from -9.87E+0 to -2.95E+0 loglOprob 
After 20,000 Trials, the Std. Error of the Mean is 0.01 

Statistics: 
Trials 
Percent of Other 
Mean 
Median 
Mode 
Standard Deviation 
Variance 
Skewness 
Kurtosis 
Coeff. of Variability 
Range Width 
Range Minimum 
Range Maximum 
Mean Std. Error 

Display Ranoe 
19,895 
99.47 

-5.45e+0 
-5.39e+0 
-5.09e+0 

7.84e-1 
6.15e-1 

-0.34 
2.96 

-14.40 
6.00e+0 
-8.00e+0 
-2.00e+0 

0.01 

Entire Range 
20,000 
100.53 

-5.46e+0 
(unavailable) 
(unavailable) 

8.11e-1 
6.58e-1 

(unavailable) 
(unavailable) 

-14.85 
6.92e+0 
-9.87e+0 
-2.95e+0 

0.01 

Cell G71 
. 0 3 ' 

Forecast: loglOILCRo 
Frequency Distribution 

=j> 

.a 
OD 
.a 
o 
Q. 

.02 

.02 

.01 

001 pilillll|llll 

19895 Trials 
r 6 2 0 

•8 .00e+0 •6 .50e+0 -S.OOe+O 
loglOprob 

-3.50e-t-0 
— T 
- 2 .00e 

4 6 5 

3 1 0 

155 

(D 
.a 
c 

o 

0 

+0 

Percentiles for Entire Range (loglOprob): 

Percentile 
0% 

10% 
20% 
30% 
40% 
50% 

loalOILCRo 
-9.87E+0 
-6.52E-I-0 
-6.12E-hO 
-5.83E+0 
-5.60E+0 
-5.40E-I-0 
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Forecast: loglOILCRo (Cont'd) Cell: G71 

Pgrc?ntilg 
60% 
70% 
80% 
90% 

100% 

IPqIOILCRQ 
-5.20E+0 
-5.00E-I-0 
-4.77E+0 
-4.48E+0 
-2.95E-I-0 

End of Forecast 
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Forecast: loglOlLCRd Cell: G72 

Summary: Certainty Level is 100.00% based on Entire Range 
Certjainty Range is from -oo to oo loglOprob 
Display Range is from -S.OOE-HO to -2.00E+0 loglOprob 
Entire Range is from -1.13E+1 to -2.75E+0 loglOprob 
After 20,000 Trials, the Std. Error of the Mean is 0.01 

Statistics: 
Trials 
Percent of Other 
Mean 
Median 
Mode 
Standard Deviation 
Variance 
Skewness 
Kurtosis 
Coeff. of Variability 
Range Width 
Range Minimum 
Range Maximum 
Mean Std. En-or 

DisDiav Range 
19,371 

96.86 
-5.95e+0 
-5.93e-(-0 
-5.83e+0 

8.76e-1 
7.68e-1 

-0.04 
2.57 

-14.73 
6.00e+0 

-8.00e+0 
-2.00e+0 

0.01 

V ' ' ^ ^ * 

Entire Range 
20,000 
103.25 

-6.03e-(-0 
(unavailable) 
(unavailable) 

9.80e-1 
9.60e-1 

(unavailable) 
(unavailable) 

ii.sn-i^iSS-"''--?'^' 

Cell G72 
.03 

Forecast: loglOILCRd 
Frequency Distribution 19371 Trials 

.a 
CD 

O 

5 3 6 

• 8 . 0 0 e + 0 •6 .50e+0 -S.OOe-HO 
loglOprob 

3 .50e+0 

Percentiles for Entire Range (loglOprob): 

Percentile 
0% 

10% 
20% 
30% 
40% 
50% 

loglOILCRd 
-1.13E-I-1 
-7.31 E+0 
-6.81 E+0 
-6.48E+0 
-6.20E+0 
-5.96E-hO 
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Forecast: loglOILCRd (Cont'd) Cell: G72 

Percentile 
60% 
70% 
80% 
90% 

100% 

loglOILCRd 
-5.73E+0 
-5.48E-HO_ 

-5.20E+0 
-4.83E+0 
-2.75E+0 

End of Forecast 

f - . ^ ^ . t T z y ^ 
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Forecast: loglOILCR Cell: G74 

Summary: Certainty Level is 100.00% based on Entire Range 
Certainty Range is from -oo to oo loglOprob 
Display Range is from -8.00E+0 to -2.00E-t-0 loglOprob 
Entire Range is from -9.64E+0 to -2.75E+0 loglOprob 
After 20,000 Trials, the Std. Error of the Mean is 0.01 

Statistics: 
Trials 
Percent of Other 
Mean 
Median 
Mode 
Standard Deviation 
Variance 
Skewness 
Kurtosis 
Coeff. of Variability 
Range Width 
Range Minimum 
Range Maximum 
Mean Std. Error 

Display Ranoe 
19,945 

99.72 
-5.24e-)-0 
-5.18e+0 
-5.05e+0 

7.72e-1 
5.95e-1 

-0.41 
3.14 

-14.72 
6.00e+0 
-8.00e+0 
-2,00e+0 

0.01 

tf«^ts::^tc 

igsK^TiSiirf* 

Entire Range 
20,000 
100.28 

-5.25e+0 
(unavailable) 
(unavailable) 

7.88e-1 
6.22e-1 

(unavailable) 
i^unavaitabte)^-

-9.64e-i-0 
-2.75e+0 

0.01 

Cell G74 
.03-

Forecast: loglOILCR 
Frequency Distribution 19945 

CD 

O 

.02 

.02 

.01 

.00 — • • • • • 1 . 1 ^ 1 

-B.OOe+O •6 .50e+0 - 5 . 0 0 e + 0 
loglOprob 

•3 .50e+0 •2.00e 

Trials 

6 5 0 

4 8 8 (D 
.o 

325 S 
(D 

162 
o 

0 

+ 0 

Percentiles for Entire Range (loglOprob): 

Percentile 
0% 

10% 
20% 
30% 
40% 
50% 

ipgioiLCR 
-9.64E+0 
-6.28E+0 
-5.88E+0 
-5.61 E+0 
-5.39E+0 
-5.19E+0 
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Forecast: loglOILCR (Cont'd) Cell; G74 

Percentile 
60% 
70% 
80% 
90% 

100% 

ipgiOli.CR 
-5.00E+0 
-4.80E+0 
-4.58E-^0 
-4.30E-(-0 
-2.75E+0 

End of Forecast 

.-,»-
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Assumption: LnSoilBaPeq 

Normal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to 4.600 
Mean value in simulation was 2.981 

Assumption: LnTC 

Nomnal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to 0.000 
Mean value in simulation was -0.886 

Assumption: LnSIRa 

Normal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 
Mean value in simulation was 3.445 

Assumption: LnSIRt 

Normal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 
Mean value in simulation was 3.446 

AsSMmpti 

3.100 
0.950 

-0.877 
0.366 

3.440 
0.800 

3.440 
0.800 

ons 

3> 

5 
CI 

1 
a. 

3» 

5 
O 

1 
Q. 

9 

1 
e 
a. 

3» 

2 

Cell: GIO 

LnSoilBaPeq 

CSJ 
0 250 1 675 3 100 4 525 5 950 

Cell: G12 

OJ 
-1.975 -1426 -0 877 -0.328 0.221 

Cell: G17 

UiSIRa 

1.040 2 240 3 440 4 640 5 840 

Cell: E l 7 

LnSIRt 

1.040 2.240 3 440 4.640 5.840 
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Assumption: LnSIRc 

Nomnal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 
Mean value in simulation was 4.129 

Assumption: NAAFo 

Beta distribution with parameters: 
Alpha 
Beta 

Selected range is from 0.00 to 1.00 
Mean value in simulation was 0.25 

Assumption: LnSAR 

Nomnal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 
Mean value in simulation was -1.718 

Assumption: LnDAR 

Nomnal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 
Mean value in simulation was -3.092 

Assumption: NAAFd 

Beta distribution with parameters: 
Alpha 
Beta 

Selected range is froin 0.00 to 1.00 

5/31/96 

4.130 
0.800 

1.00 
3.00 

-1.710 
1.010 

-3.100 
1.010 

1.00 
5.00 

3> 

3 
d 

1 
0. 

1.730 

t [ i ' W 0.00 

3) 

o 

e 
a. 

•4.740 

3* 

1 
a. 

-6.130 

LnSIRc 

2 930 4 130 

NAAFo 

0.25 0.50 

IJISAR 

-3 225 -1 710 

IJIDAR 

-4 615 -3 100 

Cell: C I7 

L L.: 
5 330 6 530 

Cell: G19 

• 

• 

0.75 1 00 

Cell: G25 

L L,̂  
-0 195 1 320 

Cell: G27 

L 

L^i 
•1.585 -0 070 

Cell: G31 
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Assumption: NAAFd (Cont'd) 

Mean value in simulation was 0.17 

Assumption: DAAFd 

Beta distribution with parameters: 
Alpha 
Beta 

Selected range is from 0.00 to 1.00 
Mean value in simulation was 0.80 

Assumption: LnBWa 

Normal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 
Mean value in simulation was 4.264 

Assumption: LnBWt 

Normal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 
Mean value in simulation was 3.755 

Assumption: LnBWc 

Normal distribution with parameters: 
Mean 
Standard Dev. 

Selected range is from -oo to oo 

5/31/96 

4.00 
1.00 

4.263 
0.206 

3.750 
0.370 

_ 

2.690 
0.330 

3> 

a o 
A 
o 

( 

3 1 

1 
0. 

3> 

a 

1 
Q. 

rt 

K 
00 

* — f — 
1.00 

3.645 

3» 

a 

a. 

i 640 

NAAFd 

0 25 0 50 

DAAFd 

^ 

0 25 0.50 

UiBWa 

^ ^ ^ 

^ ^ ^ 

i^H 
3 954 4 263 

LnBWt 

^ ^ ^ 

^^A 
j ^ M 

3.195 3 750 

Cell: 

: 

• — ' • — r 
0 75 1 00 

G31 

Cell: G32 

0.75 1 00 

Cell: G38 

t 
L 

^ 

4.572 4.881 

Cell: E38 

t 
^ 

1 ^ J 
4 305 4 860 

Cell: C38 
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Assumption: LnBWc (Cont'd) 

Mean value in simulation was 2.690 

Cell: C38 

[2J 
1700 2.195 2 690 3 185 3 680 

Assumption: FractOwn 

Uniform distribution with parameters: 
Minimum 
Maximum 

Selected range is from 0.000 to 1.000 
Mean value in simulation was 0.503 

Cell: G49 

0.000 
1.000 

0 000 0.250 0.600 0 750 1 000 

Assumption: ResOwn 

Exponential distribution with parameters: 
Rate 0.090 

Selected range is from 0.000 to oo 
Mean value in simulation was 11.062 

Assumption: ResRent 

Exponential distribution with parameters: 
Rate 

Selected range is from 0.000 to oo 
Mean value in simulation was 2.346 

0.430 

Cell: G50 

ResOwn 

0 000 12.792 25.584 38.376 51 169 

Cell: G51 

ResRent 

0 000 2.677 5 356 6 032 10 710 

Assumption: EFOc 

Custom distribution with parameters: 
Continuous range 86 to 
Continuous range 143 to 
Continuous range 196 to 
Continuous range 246 to 

Cell: C45 

Relative Probability 
143 0.30 
196 0.50 
246 0.15 
282 0.05 
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Assumption: EFOc (Cont'd) 

Total Relative Probability 

Mean value in simulation was 165 
EPOC 

Cell: C45 

1.00 

86 135 184 233 282 

Assumption: EFOt 

Custom distribution with parameters: 
Continuous range 
Continuous range 
Continuous range 
Continuous range 

Total Relative Probability 

Mean value in simulation was 181 

86 to 
143 to 
196 to 
246 to 

143 
196 
246 
282 

EFOt 

Cell: E4 

Relative Probabilii 
0.15 
0.55 
0.20 
0.10 
1.00 

86 135 184 233 262 

Assumption: EFOa 

Custom distribution with parameters: 
Continuous range 
Continuous range 
Continuous range 
Continuous range 

Total Relative Probability 

Mean value in simulation was 168 

86 to 
143 to 
196 to 
246 to 

143 
196 
246 
282 

EPOe 

Cell: G45 

Relative Probability 
0.30 
0.45 
0.20 
0.05 
1.00 

86 135 184 233 282 

End of Assumptions 
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A.169.03 2800 S. Sacramento Site 

Appendix A 

Background Concentrations of Benzo(a)pyrene 
in Soil Samples Near the Industrial Property 

25 October 1996 

Alceon Corporation 
PO Box 382669 

Harvard Square Station 
Cambridge, MA 02238-2669 

617-864-4300 
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A.169.03 2800 S. Sacramento Sit 

Appendix A 

Background Concentrations of Benzo(a)pyrene 
in Surface Soil Samples Near the Industrial Property 

In this Appendix, we present the measurements of the concentrations of carcinogenic 
polycyclic aromatic hydrocarbons (cPAHs) -- as expressed in temris of benzo(a)pyrene 
equivalents (mg/kg BaPeq, equivalent to ppm) ~ for surface soil samples representing 
"urban background concentrations" for the site in Chicago, IL. 

As shown in Table A-1, we have organized the surface soil samples into three groups. 

• Group A - the 7 surface soil samples taken by Illinois Environmental Protection 
Agency (lEPA) during the early 1990s from residential properties located to the 
west of Kedzie Blvd. The US Environmental Protection Agency has nominated 
these samples as representative of urban background conditions, although no 
formal sampling plan nor QA/QC program for these samples has been provided. 

• Group B - the 2 surface soil samples taken by lEPA during 1991 and 1992 from 
Douglas Park, more than 2,500 ft north of the Celotex property. The US 
Environmental Protection Agency has proposed these samples as representative 
of urban background conditions, although no formal sampling plan nor QA/QC 
program for these samples has been provided. 

• Group C - the 40 surface soil samples taken by ERM - North Central (ERM) 
during 1995 from residential properties located in a band between the radii of 
1,500 ft and 2,500 ft in Sectors 1 and 8 to the north of the Celotex property. 
Using powerful statistical methods, Dr. Louis Anthony Cox, Jr. of Cox Associates 
has demonstrated that the spatial pattems of these concentrations are unrelated 
- with 95 percent confidence - to any airborne cPAHs that may have emanated 
at any time from the industrial property (See Appendix B.) Thus, these 40 
samples, collected under a stringent sampling plan with strong Q/V/QC 
provisions, now provide a strong statistical population for samples representing 
urban background concentrations. 

25 October 1996 I Alceon ® 
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Taken together, these 49 samples provide a statistical population of measurements 
against which other populations of measurements may be compared using 
nonparametric tests such as the Wilcoxon Rank Sum test or the Kolmogorov-Smimov 
test. 

25 October 1996 2 Alceon ® 
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LogNormal Probability Plot for 
49 Samples 

4 -r 

3 -

0 -

I \ 1 - ^ H 1 
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Celotex.BaPeq.250ct96 A.169.03 - 2800 S. Sacramento 

Table A-1 
Soil Samples Representing "Urban Background Concentrations" 

Group A Group B Group C 

Map ID 

ID236 
10237 
10238 
10239 
10240 
10243 
10244 

iober 1996 

BaPeq 
mg/kg 

1.2 
1.8 
9.0 
1.9 
1.7 
1.8 
1.9 

Map ID 

10200 
10229 

Pa 

BaPeq 
mg/kg 

OJ 
1.9 

g e l 

Map ID 

1025 
1026 
1032 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 
1071 
1072 
1073 
1074 
1075 
1076 
1077 
1078 
1079 
1080 
1081 
1082 
1083 
1084 
1085 
1086 
1087 
1088 
1027 
1028 
1029 
1030 
1031 
1089 
1090 
1091 

BaPeq 
mg/kg 

4.5 
4.9 
4.0 
2.9 
2.9 
4.7 
3.2 
5.0 
4.3 
2.4 
2.8 
3.6 
2.7 
2.2 
2.3 
1.7 
3.4 
1.6 
3.8 
1.5 
2.0 
1.5 
2.4 
2.1 
2.4 
2.6 
1.6 
2.2 
1.1 
2.0 
2.0 
1.9 
2.2 
5.5 
4.9 

26.0 
8.1 
3.0 
5.1 
5.0 

Alceon ® 



Celotex.BaPeq.250ct96 A.169.03 - 2800 S. Sacramento 

Notes: 
A detection limit of 0.5 ppm is assumed when 
no detection limit is reported. 

For Background data, a detection limit of 0.5 ppm 
is assumed when no value whatsoever is reported. 
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Appendix B 

Estimating the Spatial Extent of 
Site-Related Contamination 

\;^--

25 October 1996 

Cox Associates 
503 Franklin Street 
Denver, CO 80218 

303-541-6043 
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A.169.03 2800 S. Sacramento Site 

Appendix B 

ESTIMATING THE SPATIAL EXTENT OF SITE-RELATED 
CONTAMINATION 

CONCEPTS FOR SPATIAL DATA ANALYSIS 

To assess the spatial extent of the human health risk that might 

potentially be associated with the Celotex property, it is useful determine 

whether there is any distance from the fenced Celotex property beyond which 

there is no association between soil concentrations of carcinogenic PAHs 

(measured as B(a)P equivalents) and distance from the property. If soil 

concentrations are statistically independent of distance from the Celotex 

property at all locations more than a certain distance, d, from the Celotex 

property, then these locations may be considered to be "background" locations 

for the purposes of quantifying the effects of contamination due to the Celotex 

property. (The distance d may be different in different directions, due to 

asymmetries in the wind rose or transport mechanisms) In other words, 

background locations may be defined as locations where there is no 

evidence of any contamination from the Celotex property. A first task is to 

identify whether there are such background locations. 

METHODS FOR SPATIAL DATA ANALYSIS 

Even small levels of contamination from the Celotex property can prevent 

a location from being ciassified as background. Therefore, it is desirable to use 

techniques that are not sensitive to the absolute magnitudes of soil 

contamination. To detect possible small but consistent additions to 

contamination above background levels, it is useful to apply statistical 

techniques that examine the spatial pattem of concentrations and that seek to 

identify where (if anywhere) they stop being related to distance from the Celotex 

property. Such statistical methods are ordinal: they test whether closer 

proximity to the property is associated with higher soil concentrations, without 

regard for the absolute magnitude of the concentrations. 

25 October 1996 1 © Cox Associates, 1996 
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The following statistical methodology was used to identify distances 
beyond which there is no significant association between soil concentrations 
and distance from the Celotex property. 

Step 1. Choose a coordinate system and compute distances from the center of 
the Celotex property to each location. The original geographic coordinates 
("Easting" and "Northing") were translated to assign the coordinates (0, 0) to the 
ERM map origin. (This origin is close to Map ID #209, near the center of the 
fenced location.) Next, the distance from the origin to each other location was 
computed. (Of course, these distances do not depend on the translation of 
axes.) These distances provide the key information for testing whether distance 
from the Celotex property (defined as distance from the origin) is associated 
with concentration. 

Note: The analyses were repeated using locations 202, 209, 210, 211, 212, 
219, and 220 as the origin. None of the conclusions changes based on which 
exact location within the fenced area is taken as the origin. 

Step 2: Hypothesis testing. The fomnal statistical description of this step is as 
follows. For different distances, d, around the Celotex property, test the 
following null hypothesis: 

HO: "For locations more than d feet from the origin, there is no association 
between distance from the Celotex property and soil concentration." 

against the altemative hypothesis 

HI: "For locations more than d feet from the origin, there is an association 
between distance from the Celotex property and soil concentration." 

Find the smallest distance, d* (if there is one) such that HI is rejected in favor of 
HO (at a p = 5% significance level) for all distances greater than d*. This test 
was performed using the Speamnan rank correlation coefficient (Siegel, 1956). 
It was checked by repeating the analysis using Kendall's Tau (Siegel, 1956) 
rather than Speamnan's rank correlation coefficient to quantify the strength of 
association between distance and concentration. 
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Infomially, the logic of this step is as follows. For any given radius, d, all 
locations more than d feet from the Celotex property are sorted in increasing 
order of their distances from the property (i.e., from the origin). Next, it is 
checked whether the locations with the highest concentrations tend to occur 
disproportionately often toward the top of the sorted list (i.e., whether higher 
concentrations tend to be observed more often than would be expected based 
on chance alone among locations closer to the origin.) This calculation is made 
using the statistical theory of pairwise ordinal associations. The relevant 
statistical theory and computational techniques (e.g.. Spearman's rank 
correlation coefficient and Kendall's Tau) have been widely accepted and 
applied as part of mainstream nonparametric statistical theory for more than 
forty years. They provide quantitative measures of the ordinal association 
between concentrations and distances from the origin. More importantly for the 
purposes of this analysis, they allow quantitative calculation of the probability of 
observing by chance alone (i.e., in the absence of any true association) an 
association between high concentrations and low distances at least as strong 
as the association actually observed in the sample data. If this probability (the 
"p-value", or significance level, of the test) is small enough, then the hypothesis 
of no association is rejected in favor of the hypothesis that there is an 
association. 

The results from this step can be summarized by a table giving the p-
value of the observed association between distance and concentration among 
locations at least d feet from the origin (and outside the fenced Celotex 
property), for different values of d. 

Technical note: The null hypotheses for increasing values of d actually fomn a 
nested family of hypotheses, tested using smaller and smaller subsets of the 
same data (namely, locations at increasing distances from the origin). In 
principle, this could raise complications due to the problem known as "multiple 
comparisons" (arising from testing multiple hypotheses based on the same 
data; see e.g., Bechoffer, 1995). In practice, the number of data points 
available for hypothesis testing is relatively large (it is 39 for the largest radius 
considered, 1500 feet), so that the hypothesis tests have adequate power to 
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detect even relatively weak associations and the problem of multiple 
comparisons does not threaten the validity of the conclusions. 

Step 3: Refinements and validation of the hypothesis tests. The hypothesis-
testing procedure just described was refined by applying it to different angular 
sectors (e.g., to one quadrant at a time). In addition, whenever it was concluded 
that locations more than d feet from the Celotex property in a certain direction 
(angular sector) were not affected by the Celotex property, then this conclusion 
was cross-checked by computing the average gradient (the direction of steepest 
increase in concentrations; see Benveniete et al., 1995) from the sampled data. 
If the conclusion is correct, the gradient directions computed from subsets of 
locations more than d from the origin should show no tendency to point toward 
the origin more than they point away from it. These refinements and validation 
tests generally confirmed the conclusions based on the Spearman's rank 
correlation analysis, so they are not reported on further here. 

Step 4: Spatial data analysis based on concentric rings. The preceding steps 
were discussed with the EPA (especially. Dr. Arthur Lubin), who contributed 
substantial advice and suggested additional tests and improvements. Dr. Lubin 
pointed out that to the extent that the spatial data tend to be distributed at 
approximately the same distance from the origin (so that radial variation toward 
or away from the origin is small compared to transverse variation), the 
Spearman's rank correlation test and similar methods may be poweriess to 
detect an association between distance from the origin and concentration, even 
if such an association exists (or would exist and be revealed if there were 
adequate radial variation in the sampling plan). To overcome this difficulty, we 
reanalyzed the data using an entirely different statistical logic. First, the data 
were subdivided into 10 concentric rings at increasing distances around the 
origin. Next, the frequency distributions of concentrations among locations 
within different rings were compared. These comparisons were carried out 
using the Kolmogorov-Smirnov (K-S) nonparametric test, (DeGroot, 1975), 
based on a recommendation from Dr. Lubin. This test has the advantage that it 
avoids any need to make potentially controversial assumptions about the 
specific parametric forms of the concentration distributions. The use of 
concentric rings allows the K-S test to examine absolute differences among 
distributions, instead of relying on ordinal tests such as the Spearman's rank 
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correlation test. Thus, it provides an altemative statistical logic for investigating 
the same issues originally explored using the K-S test. As it turned out, the 
concentric ring analysis using the K-S test confirmed the results of the 
Spearman's analysis, so the details of the analysis will not be repeated here. 
However, we note that the robustness of the conclusions was double-checked 
by repeating the concentric ring analysis using 12 rings instead of 10, making a 
different assignment of locations to rings, and shifting the origin slightly. In 
addition, the concentric ring analysis was applied to individual quadrants. 
None of these variations changed the conclusions, suggesting that the main 
results of the spatial data analysis are not sensitive to the exact details of the 
analytic procedure (i.e., they are "robust" to reasonable changes in the 
statistical data analysis techniques applied). 

Step 5: Validation of conclusions using linear regression and nonparametric 
("loess") nonlinear regression and classification tree analyses. To further 
validate our conclusions, we repeated the statistical analyses using ordinary 
linear regression of concentration (and also log of concentration) against 
distance (in different quadrants and in the whole sample) instead of the 
Speamnan's rank correlation approach. We also used two more sophisticated 
techniques from modem computational statistics: classification tree analysis 
(now included in S-PLUS and other advanced statistical computing and 
artificial intelligence packages) and nonlinear, nonparametric smoothing 
("loess" regression), also included in S-PLUS. These more advanced methods 
confirmed the main results from the simpler analyses, as reported next. 

RESULTS OF SPATIAL DATA ANALYSES 

Results of Exploratory Analysis Using Speamnan's Rank Correlation Test 

Table 1 shows the main results of the analysis examining the association 
between distance and "concentration" (measured in B(a)P equivalents) among 
locations at various distances outside the fence. When locations 1,000 feet or 
less from the Celotex property are included, the association between distance 
and concentration is highly significant (p values less than 0.01). 
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When only locations 1,200 feet or more from the origin are considered, however, the 
association becomes much less strong ~ less than the 5% significance level often 
used as a default level for rejecting the hypothesis of association. Thus, Table 1 
suggests that there is a break between 1,100 and 1,200 feet from the Celotex 
property, with a significant relation between concentration and distance for locations 
inside the 1,100-foot radius, but not for neighborhoods outside the 1,100-foot 
radius. 

TABLE 1: DISTANCE AND SOIL CONCENTRATION ARE NOT SIGNIFICANTLY 
ASSOCIATED BEYOND 1100 FEET FROM THE CELOTEX PROPERTY 

Distance in feet (from ID #209^ 
800 feet 
900 
950 
1000 
1100 

1200 
1300 
1400 
1500 

p-value of association 
< 0.000001 
0.000026 
0.00025 
0.00077 
0.00377 

0.076 
0.19 
0.08 
0.19 

The above table offers some possible evidence of an association at 
distances beyond 1,100 feet, although it is not significant at the p = 0.05 level. 
To obtain a more thorough understanding of the data, it is useful to examine the 
concentration-distance relation in different directions around the origin. The 
results are shown in Table 2. 
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TABLE 2: THE ASSOCIATION BETWEEN CONCENTRATION AND DISTANCE 
APPEARS TO EXTEND FURTHEST IN THE NORTHEAST QUADRANT 

distance in feet 

800 

900 

1000 

1100 

1200 

1500 

NW Quadrant 

p-value 

0.0072 

0.035 

0.14 
II 

0.15 

0.51 

N 

48 

46 

44 
II 

39 

25 

SW Quadrant 
1 

0.021 
II 

0.047 

0.28 

0.41 

0.22 

N 

20 
II 

15 

13 

10 

5 

NE Quadrant 

E N 
0.000002 29 

0.0000045 26 
II II 

II II 

0.0058 22 

0.016 21 

In this table, each quadrant with data (excluding the southeast quadrant, for 
which there were no soil samples) has two columns of nuriibers: (i) The p-
values associated with the Spearman's rank correlation (between concentration 
and distance from the origin) for locations outside the Celotex property fence 
line and more (less???) than the specified distance from the origin; and (ii) 
The number of locations falling in each of these concentric subsets. Ditto mari<s 
indicate distance ranges in which there are no sample data points, so that 
increasing the distance does not change the results. 

These data suggest that in the northwest and southwest quadrants, the 
association between concentration and distance may become insignificant 
between 900 and 1100 feet, in the northeast quadrant, the association is 
significant at distances out to 1500 feet and beyond. (Only two samples were 
taken between 1500 feet and 1700 feet from the origin, and neither of them was 
taken from the northeast quadrant, so the exact pattem of concentration vs. 
distance between 1500 and 1700 feet cannot be determined.) Note that this 
hypothesis-testing procedure does not provide an exact boundary between 
significant and non-significant associations, since there is some noise in the p-
values based on the sample data, and since data are scarce in the distance 
range from 1500 to 1700 feet. Also, the fact that the data sets considered are 
concentric introduces a multiple hypothesis testing problem. However, it is 
clear from these data that the northeast quadrant deserves additional analysis 
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and may be a greater source of potential concem than the other two quadrants, 
based on the sample data. 

These analyses, which we regard as exploratory but useful, show that to 
the west of the Celotex property, there is no evidence 'of a significant 
association between concentration and distance for locations more than 1500 
feet from the Celotex property. [There is about a 46% probability that the 
observed association among locations beyond 1500 feet, or a stronger one, 
would occur by chance. This conclusion was double-checked using Kendall's 
Tau (Siegel, 1956), which applies a different statistical logic based on the 
similarity of rankings of locations by distance from the origin and by 
concentration. The resulting p-level was 0.46, indicating that the observed 
degree of association between concentration and distance for locations beyond 
1500 feet is no stronger than would be expected to occur by chance alone in 
the absence of any true association.] In contrast, there is strong evidence of a 
negative association between distance and concentration (i.e., higher 
concentrations occur at smaller distances from the Celotex property) among 
locations less than 900 feet from the Celotex property. Between about 1000 
and 1400 feet, the evidence is ambiguous and conclusions are uncertain due to 
sampling variability ("noise") in the sample data. To the northeast, there is 
evidence of a significant association at distances out to 1500 feet and beyond. 
This association is worth additional examination. 

Thus, if the goal is to identify locations for which one can be confident 
that there is significant contamination associated with (distance from) the 
Celotex property, then one might choose locations inside the 1000-foot radius 
(or further out in the northeast). If the goal is to identify locations for which one 
can be quite confident that there is no significant association with distance from 
the Celotex property, then one could choose neighborhoods outside the 1500 
foot radius (and further out in the northeast quadrant). 
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Results of Other Tests: Rino Analvsis. Linear and Nonlinear Regression. Tree 
Analysis 

More detailed analyses using the K-S test to compare the concentration 
distributions in "rings" at different distances from the origin established the 
following key results: 

1. Distance is not significantly associated with concentration among all 
locations more than 1,200 feet from the origin. 

2. In the northeast quadrant specifically, distance is not significantly associated 
with concentration among all locations more than 1,500 feet from the origin. 
(There is only one data point between 1200 and 1500 feet from the origin in the 
northeast quadrant, so that possible association between distance and 
concentration over this interval cannot be detemnined from the available data.) 

These findings are further supported by the "loess" nonparametric nonlinear 
regression, which suggests that the negative association between distance from 
the origin and concentration disappears between 1200 and 1500 feet from the 
origin in the northeast quadrant and in the whole data set. Simple linear 
regression of concentration or log-concentration against distance leads to 
similar conclusions. For example, the log-concentration regression coefficient 
for DISTANCE when all data points in the northeast quadrant (out to a mile) and 
more than 1100 feet from the origin are considered is highly significant (p = 
0.00015). At distances of 1200 feet and more, the regression coefficient for 
distance becomes insignificant ( p > 0.2). This is consistent with the hypothesis 
that there is no significant association between concentration and distance 
beyond 1,200 feet from the origin, even in the northeast quadrant. 

Finally, the classification tree analysis, which uses a very different 
approach (minimizing classification entropy) from any of the other methods 
considered, reaches very compatible conclusions. When asked to discover 
rules for predicting concentration in B(a)P equivalents for locations outside the 
Celotex fence, based on the available sample data, this method automatically 

25 October 1996 9 © Cox Associates, 1996 



A. 169.03 2800 S. Sacramento Site 

determines that locations more than 1193 feet from the origin tend to have 
significantly lower concentrations than locations closer to the origin. It 
automatically clusters the locations into the following four rings: 

• Less than 470 feet from the origin (mean concentration = 30.5). 
• 471 - 763 feet from the origin (mean concentration = 27) 
• 764 -1193 feet from the origin (mean concentration = 10.4) 
• More than 1193 feet from the origin (mean concentration = 3.4). 

Thus, to a close approximation, this method also leads to the conclusion that 
locations more than 1,200 feet from the origin (in any direction) may be pooled 
together and treated as "background" locations for purposes of statistical 
analysis. 

DISCUSSION OF SPATIAL DATA ANALYSIS RESULTS 

The analysis reported here suggests that 1,200 feet may be used as a 
statistically supported boundary between "background" locations (not affected 
by the Celotex property in any statistically detectable or observable way) and 
locations that might plausibly have been affected. Given the scarcity of data 
points between 1,200 feet and 1,500 feet from the origin, and the desire to be 
health-protective in the absence of relevant information, it appears reasonable 
to treat 1,500 feet as a useful outer bound on the distance at which 
contamination from the Celotex property affects soil sample concentrations. At 
the other extreme, it is almost certain that locations less than about 900 to 1000 
feet from the Celotex property have concentrations that tend to increase as one 
moves toward the property. A reasonable compromise between these extremes 
might be at a radius of about 1,100 feet for locations west of the Celotex 
property (i.e., in the northwest or southwest quadrants) and at a radius of about 
1300 feet to its northeast, as distances at which the hypothesis of contamination 
associated with the Celotex property cannot be either proved or disproved 
based on the available data. 

The frequency distribution of concentrations among "background" 
locations (defined conservatively as locations more than 1500 feet from the 
origin) is well-approximated (according to a K-S test) by a log-normal 
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distribution with mean 1.0 and variance 0.4. The range of variation in a sample 
of size 40 spans more than an order of magnitude, from 0.65 to over 26. This 
has important implications for risk management. Any remediation planning 
effort that seeks to make the concentrations at locations near the Celotex 
property indistinguishable from (or at least as clean as) the concentrations at 
background locations must recognize this variability. For example, the goal of 
cleanup activities might be to reduce the distribution of concentrations among 
locations potentially affected by the Celotex property so that it is 
indistinguishable from the empirical distribution of concentrations at 
background locations. In this case, the decision of which locations to address 
first and when to stop should reflect the inherent variability in the concentration 
distribution among background locations. 

The concentration distribution among locations less than 1,000 feet from 
the Celotex property but outside the fence is well approximated (again 
according to a K-S test) by a log-nomnal distribution with mean 2.8 and variance 
0.6. The range of values is from 2.1 to 61, almost a 30-fold range. This 
suggests that there may be substantial gains to health protection to be achieved 
by focusing on locations in the upper tail of this distribution. Moreover, there is 
substantial overiap between the concentration distributions of "foreground" 
locations (e.g., those less than 1,000 feet from the origin but outside the fence) 
and "background" locations (e.g., those more than 1,500 feet from the origin). 
Focusing on locations in the upper tail of the foreground locations can help to 
minimize the overiap between concentrations at properties that are addressed 
and concentrations at background locations that are not addressed. 
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Benzo(a)pyrene 

1 - IRIS 
NAME - Benzo[a]pyrene (BaP) 
RN - 50-32-8 
IRSN - 133 
DATE - 941102 
UPDT - 11/02/94, 1 field 
STAT - Oral RfD Assessment (RDO) no data 
STAT - Inhalation RfC Assessment (RDI) no data 
STAT - Ccircinogenicity Assessment (CAR) on-line 11/01/94 
STAT - Drinlcing Water Health Advisories (EMHA) no data 
STAT - U.S. EPA Regulatory Actions (EXSR) on-line 01/01/92 
IRH - 08/01/89 KEFS Bibliography on-line 
IRH - 01/01/92 CAR Carcinogen assessment noted as pending change 
IRH - 01/01/92 EXSR Regulatory actions updated 
IRH - 04/01/92 CAR Summary revised; oral quantitative section added 
IRH - 04/01/92 CREF Carcinogen assessment references revised 
IRH - 05/01/92 CARDR Work group review and verification date corrected 
IRH - 07/01/92 CAR Text revised in NOTE 
IRH - 07/01/92 CARO Range of slope factors corrected 
IRH - 07/01/92 CARO Slope factor and r i s k s corrected 
IRH - 07/01/92 CARO Data table heading corrected 
IRH - 07/01/92 CARO Slope factor corrected; last paragraph 
IRH - 07/01/92 CARDR Secondary contact changed 
IRH - 09/01/93 CAR Carcinogenicity assessment noted as pending change 
IRH - 09/01/93 CARDR Worlc groi;̂ ) review date added 
IRH - 12/01/93 CREF Reference revised - U.S. EPA, 1991b 
IRH - 02/01/94 CARDR Primary contact's phone number changed 
IRH - 03/01/94 CAR Pending change note ranoved; no change 
IRH - 03/01/94 CARDR Wor)c group review date added 
IRH - 07/01/94 CARDR Wor)c group review date added 
IRH - 11/01/94 CARO Slope factor clarified; changed 0 to "O" 
RLEN - 25760 
SY - BaP 
SY - Benzo[a]pyrene 
SY - BENZO(d,e,f)CHRYSENE 
SY - 3,4-BENZOPIRENE 
SY - 3,4-BENZOPYRENE 
SY - 6,7-BENZOPYRENE 
SY - BENZO(a)PYRENE 
SY - 3,4-BENZPYREN 
SY - 3,4-BENZPYE?ENE 
SY - 3,4-BENZ(a)PYRENE 
SY - BENZ(a)PYRENE 
SY - 3,4-BENZYPYRENE 
SY - BP 
SY - 3,4-BP 
SY - B(a)P 
SY - RCRA WASTE NUMBER U022 

RDO NO DATA 

NO DATA RDI 
CAREV-
o CLASSIFICATION 
o BASIS FOR CLASSIFICATION 

B2; probable hijman carcinogen 
Human data specifically linJcing 
benzo[a]pyrene (BAP) to a carcinogenic effect 
are lac)ting. There are, however, multiple 
cinimal studies in many species demonstrating 
BAP to be ceircinogenic following 
administration by numerous routes. BAP has 
produced positive results in numerous 
genotoxicity assays. NOTE: At the June 1992 
CRAVE Worlc Group meeting, a revised ris)c 
estimate for benzo[a]pyrene was verified (see 
Additional Comments for Oral Exposure). This 
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section provides information on three aspects 
of the carcinogenic ris)c assessment for the 
agent in question; the U.S. EPA 
classification, cind quantitative estimates of 
ris)c from oral exposure and from inhalation 
exposure. The classification reflects a 
weight-of-evidence judgment of the li)celihood 
that the agent is a human Ceircinogen. The 
quantitative ris)c estimates aire presented in 
three ways. The slope factor is the result of 
application of a low-dose extrapolation 
procedure and is presented as the rislc per 
(mg/kg)/day. The unit risk is the 
quantitative estimate in terms of either risk 
per ug/L drinJung water or risk per ug/cu.m 
air breathed. The third form in v^ich risk is 
presented is a drinking water or air 
concentration providing cancer risks of 1 in 
10,000 or 1 in 1,000,000. The Carcinogenicity 
Background Document provides details on the 
rationale and methods used to derive the 
carcinogenicity values found in IRIS. Users 
are referred to the Oral Reference Dose (RfD) 
and Reference Concentration (RfC) sections 
for information on long-term toxic effects 
other thcui ceircinogenicity. 

o HUMAN CARCINOGENICITY DATA 

Inadequate. Lung ceincer has been shown to be induced in hunens by vcirious 
mixtures of polycyclic aromatic hydroceirbons known to contain BAP including 
cigarette smoke, roofing tar and coke oven emissions. It is not possible, 
however, to conclude from this information that BAP is the responsible agent. 

o ANIMAL CARCINOGENICITY DATA : 

Sufficient. The animal data consist of dietary, gavage, inhalation, 
intratracheal instillation, dermal and subcutaneous studies in niimerous 
strains of at least four species of rodents and several primates. Repeated 
BAP administration has been sissociated with increcised incidences of total 
tumors and of tumors at the site of exposure. Distant site ttimors have also 
been observed after BAP administration by various routes. BAP is frequently 
used as a positive control in Ceircinogenicity bioassays. 

BAP administered in the diet or by gavage to mice, rats euid hamsters has 
produced increeised incidences of stomach tumors. Neal and Rigdon (1967) fed 
BAP (purity not reported) at concentrations of 0, 1, 10, 20, 30, 40, 45, 50, 
100 and 250 ppm in the diets of male and female CFW-Swiss mice. The age of 
the mice ranged from 17-180 days old and the treatment time from 1-197 days; 
the size of the treated groups ranged from 9 to 73. There were 289 mice 
(number of mice/sex not stated) in the control group. No forestomach tvonors 
were reported in the 0-, 1- and 10-ppm dose groups. The incidence of 
forestomach tumors in the 20-, 30-, 40-, 45-, 50-, 100- and 250-ppm dose 
groups were 1/23, 0/37, 1/40, 4/40, 23/34, 19/23 and 66/73, respectively. The 
authors felt that the increasing tvanor incidences were related to both the 
concentration and the number of doses administered. Historical control 
forestomach txznor data are not available for CFW-Swiss strain mice. In 
historical control data from a related mouse strain, SWR/J Swill, the 
forestomach tumor incidence rate was 2/268 and 1/402 for males and females, 
respectively (Rabstein et al., 1973). 

Br\jne et al., (1981) fed 0.15 mg/kg BAP (reported to be "highly pure") in 
the diet of 32 Sprague-Dawley rats/sex/group either every 9th day or 5 
times/week. These treatments resulted in annual average doses of 6 or 39 
mg/kg, respectively. An untreated group of 32 rats/sex served as the control. 
Rats were treated until moribund or dead; survival was similar in all groups. 
Histologic examinations were performed on each rat. The combined incidence of 
tumors of the forestomach, esophagus and Ictrynx was 3/64, 3/64 and 10/64 in 
the control group, the group fed BAP every 9th day and the group fed BAP 5 
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times/week, respectively. A trend analysis showed a statistically significant 
tendancy for the proportion of animals with tumors of the forestomach, 
esophagus or larynx to increase steadily with dose (Knauf and Rice, 1992). 

As part of the same study, Bmne et al. (1981) administered BAP ("highly 
pure") orally to Sprague-Dawley rats by caffeine gavage. The rats were 
treated until moribimd or dead; all rats were subjected to terminal 
histopathologic examination. Gavaged rats were divided into 3 dose groups of 
32 rats/sex/group; the groups received 0.15 mg/kg per gavage either every 9th 
day (Group A), every 3rd day (Group B) or 5 times per week (Group C) ; these 
treatments resulted in annual average doses of 6, 18 or 39 mg/kg, 
respectively. Untreated and gavage (5 times/week) controls (32 
rats/sex/group) were included. The median survival times for the untreated 
control group; the gavage control group; and groups A, B and C were 129, 102, 
112, 113 and 87 weeks, respectively. The survival time of Group C was short 
conpared with controls and may have precluded tumor formation (Knauf and Rice, 
1992). The combined tirnior incidence in the forestomach, esophagus and larynx 
was 3/64, 6/64, 13/64, 26/64 and 14/64 for the untreated control group, gavage 
control group, group A, group B and group C, respectively. There was a 
statistically significant cissociation between the dose emd the proportions of 
rats with tumors of the forestomach, esophagus or larynx. This association is 
not characterized by a linear trend. The linearity was affected by the 
appcirently reduced tumor incidence that is seen in the high-dose group (Knauf 
and Rice, 1992). 

Intratracheal instillation etnd inhalation studies in guinea pigs, hamsters 
and rats have resulted in elevated incidences of respiratory tract and upper 
digestive tract tumors (U.S. EPA, 1991a). Male Syrian golden hamsters 
(24/group) were exposed by inhalation to 0, 2.2, 9.5 or 46.5 mg BAP/cu.m in a 
sodiim chloride aerosol (Thyssen et al., 1981). (Greater than 99% of the 
particles had diameters between 0.2 and 0.5 um.) For the first 10 weeks of 
the study, the hamsters were exposed to BAP daily for 4.5 hours/day; 
thereafter, daily for 3 hoiors/day. Animals dying within the first year of the 
study were replaced; the effective number of hamsters in the control, low-, 
mid- and high-dose groups was 27, 27, 26 and 25, respectively. (The total 
time of treatment, although over 60 wee]<s, was not stated.) During the first 
10 weeks, animals in the 3 dose groups reportedly lost weight. After week 10, 
however, the body weights in all groves were similau: until week 60 when the 
body weights of hamsters in the high-dose group decreased and the mortality 
increased significcintly. The incidence of respiratory tract tumors (including 
tumors of the nasal cavity, larynx and trachea) in the control, low-, mid- and 
high-dose groups was 0/27, 0/27, 9/26 and 13/25, respectively; the incidences 
of upper digestive tract tumors (including tumors of the pheirynx, esophagus 
and forestomach) were 0/27, 0/27, 7/26 and 14/25, respectively. Trend 
einalysis for incidences of both respiratory tract tumors and upper 
gastrointestinal tract tumors showed a statistically significant tendancy for 
the proportion of animals with either tumor type to increase steadily with 
increased dose (Knauf and Rice, 1992). 

Intraperitoneal BAP injections have caused increases in the number of 
injection site tumors in mice and rats (reviewed in U.S. EPA, 1991a) . 
Subcutaneous BAP injections have caused increases in the number of injection 
site tumors in mice, rats, guinea pigs, hamsters and some primates (lARC, 
1983; U.S. EPA, 1991a) . BAP is commonly used as a positive control in many 
dermal application bioeissays and has been shown to cause slcin tumors in mice, 
rats, rabbits and guinea pigs. BAP is both an initiator and a complete 
Cctrcinogen in mouse skin (lARC, 1983). Increased incidences of distant site 
tumors have also been reported in animals cis a consequence of dermal BAP 
esqposure (reviewed in U.S. EPA, 1991a) . 

BAP hcis also been reported to be carcinogenic in animals vhen administered 
by the following routes: i.v.; transplacentally; impleintation in the stomach 
wall, lung, renal parenchyma and brain; injection into the renal pelvis; and 
vaginal painting (U.S. EPA, 1991a). 

o SUPPORTING DATA : 

Benzo[a]pyrene has been shown to cause genotoxic effects in a broad range 
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of prokaryotic and mammalian cell assay systems (U.S. EPA, 1991a) . In 
prolcaryotes, BAP tested positive in ENA damage assays and in both reverse and 
forward mutation eissays. In maiimalian cell culture assays, BAP tested 
positive in DNA damage eissays, forward mutation assays, chromosomal effects 
assays and cell transformation assays. 

CARO -
O CLASSIFICATION 
o BASIS FOR CLASSIFICATION 

o ORAL SLOPE FACTOR 
o DRINKING WATER UNIT RISK 
o DOSE EXTRAPOLATION METHOD 

o RISK/WATER CONCENTRATIONS 

B2; probable human carcinogen 
Human data specifically linking 
benzo[a]pyrene (BAP) to a carcinogenic effect 
eire lacking. There a r e , however, multiple 
animal studies in many species demonstrating 
BAP to be cau:cinogenic following 
administration by numerous routes. BAP has 
produced positive results in numerous 
genotoxicity eissays. NOTE: At the June 1992 
CRAVE Work Group meeting, a revised risk 
estimate for benzo[a]pyrene was verified (see 
Additional Comments for Oral Exposure). This 
section provides information on three aspects 
of the caufcinogenic risk assessment for the 
agent in question; the U.S. EPA 
classification, and quantitative estimates of 
risk from oral exposure and from inhalation 
exposure. The cleissification reflects a 
weight-of-evidence judgment of the likelihood 
that the agent is a human carcinogen. The 
quantitative risk estimates eu:e presented in 
three ways. The slope factor is the result of 
application of a low-dose extrapolation 
procedure and is presented as the risk per 
(mg/kg)/day. The unit risk is the 
quantitative estimate in terms of either risk 
per ug/L drinJcing water or risk per ug/cu.m 
air breathed. The third form in vAiich risk is 
presented is a drinking water or air 
concentration providing cancer risks of 1 in 
10,000 or 1 in 1,000,000. The Carcinogenicity 
Background Docimient provides details on the 
rationale and methods used to derive the 
Ceircinogenicity values found in IRIS. Users 
are referred to the Oral Reference Dose (RfD) 
and Reference Concentration (RfC) sections 
for information on long-term toxic effects 
other than ceurcinogenicity. 
7.3E+0 per (mg/kg)/day 
2.1E-4 per (ug/L) 

Risk estimate based on a geometric mean of 
four slope 

Drinking Water Concentrations at Specified Risk Levels: 

Risk Level Concentration 

E-4 (1 in 10,000) 
E-5 (1 in 100,000) 
E-6 (1 in 1,000,000) 

5E-1 ug/L 
5E-2 ug/L 
5E-3 ug/L 

o ORAL DOSE-RESPONSE DATA : 

Tumor Type — forestomach, squamous cell papillomas and carcinomas 
Test Animals — CFW mice, sex un]aiown 
Route — oral, diet 
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Reference — Neal and Rigdon, 1967 

a) Conditional upper boimd two-stage model with terms for promotion 
(modification of Moolgavlcar-Venson-Knudson, generalized forms of two-stage 
model) 

Administered 
Dose (ppm) Tumor Incidence 

0 
1 
10 
20 
30 
40 
45 
50 
100 
250 

0/289 
0/25 
0/24 
1/23 
0/37 
1/40 
4/40 
24/34 
19/23 
66/73 

Tumor Type — squamous cell Ccircinoma of the forestomach 
Test Animals — SWR/J Swill mice 
Route — oral, diet 
Reference — Rabstein et al., 1973 

Administered 
Dose (ppm) Tumor Incidence 

0 2/268* male 
0 1/402* female 

*See additional comments concerning the use of control data from other studies 
that utilized similar mouse strains. 

b) Same data as above. Upper bound estimate by extrapolation from 10% 
response point to background of aipirically fitted dose-response curve. 
(Procedure using two-stage model described in (a)). 

c) Same data as above exc^t the additional 2 control groups (Reibstein et al., 
1973) were excluded. Generalized Weibull-type dose-response model. 

d) Tumor Type — forestomach, larynx and esophagus, papillomas and carcinomas 
(combined). Linearized Multistage Model, Extra Risk. 

Test Animals — Sprague-Dawley rats, nales and females 
Route — oral, diet 
Reference — Brune et al., 1981 

Dose Tumor 
(mg/kg diet/year) Incidence 

0 3/64 
6 3/64 
39 10/64 

o ADDITIONAL COMMENTS : 

NOTE: The rcinge of oral slope factors calculated was: 4.5E+0 to 11.7E+0 per 
(mg/kg)/day. 

At the June 1992 CRAVE Work Group meeting, it was noted that an error had 
been made in the 1991 document "Dose-Response Analysis of Ingested 
Benzo [a] pyrene" which is quoted in the Drinking Water Criteria Docimient for 
PAH. In the calculation of the doses in the Brune et al. (1981) study it was 
erroneously concluded that doses were given in units of mg/yeeir, vrtiereas it 
weis in fact mg/kg/year. When the doses are corrected the slope factor is 
correctly calculated as 11.7 per (mg/kg)/day, as opposed to 4.7 per 
(mg/kg)/day as reported in the Drinking Water Criteria Document. The correct 
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range of slope factors is 4.5 to 11.7 per (mg/kg)/day, with a geometric mean 
of 7,3 per (mg/kg)/day. A drinking water unit risk based on the revised slope 
factor is 2.1E-4 per (ug/L). Therefore, these values have been changed on 
IRIS and an Erratum to the DrinJd.ng Water Criteria Document is being prepeired. 

Risk estimates were calculated from two different studies in two species 
of outbred rodents (Neal and Rigdon, 1967; Brune et al., 1981). These studies 
have several commonalities including mode of administration, tumor sites, 
tumor types and the presumed mechanisms of action. The data sets were not 
combined prior to modeling (the preferred approach) because they eitployed 
significantly dissimilar protocols. 

The geometric mean from several slope factors, each considered to be of 
equal merit, was used to calculate a single unit risk. These four slope 
factor estimates span less than a factor of three and each is based on an 
acceptable, but less-than-optimal, data set. Each estimate is based on a low-
dose extrapolation procedure which entails the use-of-multiple assunptions and 
default procedures. 

Clement Associates (1990) fit the Neal and Rigdon (1967) data to a two-
stage dose response model. In this model the transition rates and the growth 
rate of preneoplastic cells were both considered to be exposure-dependent. 
(The functional form for the dose-dependence of preneoplastic cell growth rate 
was simple saturation.) A term to permit the modeling of BAP eis its own 
promoter was also included. Historical control stomach tumor data from a 
related, but not identical, mouse strain, SWR/J Swill (Rabstein et al., 1973) 
and the CFW Texas colony (Neal and Rigdon, 1967) were used in the modeling. In 
calculating the lifetime unit risk for humans several standeurd assunptions 
were made: mouse food consunption was 13% of its body weight/day; human body 
weight wcis assumed to be 70 leg and the assumed body weight of the mouse 0.034 
kg. The standard assumption of surface cirea equivalence between mice and 
humans was the cube root of 70/0.034. A conditional upper bound estimate was 
calculated to be 5.9 per (mg/kg)/day (U.S. EPA, 1991a). 

A U.S. EPA report (1991b) argued that the upper-bound estimate calculated 
in Clement Associates (1990) involved the use of unrealistic conditions placed 
on certain peirameters of the equation. Other objections to this slope factor 
were also raised. The authors of this report used the Neal and Rigdon (1967) 
data to generate an upper-bound estimate extrapolated linearly from the 10% 
response point to the background of an empirically fitted dose-response curve 
(Clanent Associates, 1990). Other results, from similar concepts and 
approaches used for other compounds, suggest that the potency slopies 
calculated in this manner cire comparable to those obtained from a linearized 
multistage procedure for the majority of the other conpounds. The upper bound 
estimate calculated in U.S. EPA (1991b) is 9.0 per (mg/kg)/day. 

The authors of U.S. EPA (1991b) selected a model to reflect the partial 
lifetime exposure pattem over different parts of the animals' lifetimes. The 
authors thought that this approach more closely reflected the Neal and Rigdon 
(1967) regimen. A Weibull-type dose-response model Weis selected to 
acconmodate the partial lifetime e^^osure; the upper-bound slope factor 
calculated from this method was 4.5 per (mg/)cg)/day. 

Using the dietary portion of the Brune et al. (1981) rat data, a 
linearized multistage procedure was used to calculate an upper bound slope 
factor for humans. In the interspecies conversion the assumed hinran body 
weight was 70 kg and the rat 0.4 kg. The slope factor calculated b/ this 
method was 11.7 per (mg/kg)/day. 

o DISCUSSION OF CONFIDENCE : 

The data are considered to be less than optimal, but acceptable. There 
are precedents for using multiple data sets from different studies using more 
thein one sex, strain eind species; the use of the geometric mean of four slope 
factors is preferred because it madces use of more of the available data. The 
use of the geometric means was based on arguments presented in a personal 
cammunication (Stiteler, 1991). 
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CARI - NO DATA 
CARDR-
o CARCINOGENICITY SOURCE : 

Source Document — U.S. EPA, 1991a,b 

The 1991 Drinking Water Criteria Document for the polycyclic eiromatic 
hydroceirbons has received agency review. 

DOCUMEMT 

o REVIEW DATES : 01/07/87, 12/04/91, 06/03/92, 08/05/93, 
02/02/94, 

o VERIFICATION DATE : 12/04/91 
o EPA CONTACTS : 

Robert E. McGaughy / OHEA — (202)260-5889 

Rita Schoeny / OHEA — (513)569-7544 

HAONE- NO DATA 

HATEN- NO DATA 

HALTC- NO DATA 

HALTA- NO DATA 

HALIF- NO DATA 

OLEP - NO DATA 

ALAB - NO DATA 

TREAT- NO DATA 

HADR - NO DATA 

CAA - NO DATA 

W2CHU-

Water and Fish Consunption: 2.8E-3 ug/L 

Fish Consunption Only: 3.11E-2 ug/L 

Considers technological or economic feasibility? — NO 

Discussion — For the maximum protection from the potential carcinogenic 
properties of this chemical, the ambient water concentration should be zero. 
However, zero may not be obtainable at this time, so the recomnended criteria 
represents a E-6 estimated incremental increase of cancer over a lifetime. The 
values given represent polynuclear eiromatic hydroceirbons eis a class. 

Reference ~ 45 FR 79318 (11/28/80) 

EPA Contact — Criteria and Standards Division / OWRS 
(202)260-1315 / FTS 260-1315 

WQCAQ-

Freshwater: 
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Acute LEC — none 
Chronic LEC — none 

Marine: 

Acute LEC — 3.0E+2 ug/L 
Chronic LEC — none 

Considers technological or economic feasibility? — NO 

Discussion — The values that are indicated as "LEC" eire not criteria, but 
are the lowest effect levels found in the literature. LEC's are given when 
the minimum data required to derive water quality criteria are not available. 
The values given represent polynucleeu: aromatic hydrocarbons eis a class. 

Reference — 45 FR 79318 (11/28/80) 

EPA Contact — Criteria and Standards Division / CWRS 
(202)260-1315 / FTS 260-1315 

MXG -

Value — 0 mg/L (Proposed,1990) 

Considers technological or economic feaisibility? — NO 

Discussion — The proposed MCLG for benzo (a)pyrene is zero beised on the 
evidence of carcinogenic potentieil (B2). 

Reference ~ 55 FR 30370 (07/25/90) 

EPA Contact — Health and Ecological Criteria Division / OST / 
(202) 260-7571 / FTS 260-7571; or Safe Drinking Water Hotline / (800) 426-4791 

MCL -

Value — 0.0002 mg/L (Proposed, 1990) 

Considers technological or economic feeisibility? — YES 

Discussion — The proposed H X is equal to the PQL and is associated 
with a maximum lifetime individual risk of 1 E-4. 

Monitoring requirements — Comnunity euid non-transient water system 
monitoring based on state vulnereOaility assessment; vulnerable systems 
to be monitored quarterly for one year; repeat monitoring dependent upon 
detection and size of system. 

Analytical methodology — High pressure liquid chromatography (EPA 550, 
550.1); gas chromatographic/meiss spectrometry (EPA 525): PQL= 0.0002 mg/L. 

Best availeible technology — Granuleu: activated ceirbon 

Reference ~ 55 FR 30370 (07/25/90) 

EPA Contact — Drinking Water Stemdards Division / OGWEW / 
(202) 260-7575 / FTS 260-7575; or Safe Drinking Water Hotline / (800) 426-4791 

_IV.B.3. SECONDARY MAXIMUM CONTAMINANT LEVEL (SMCL) for Drinking Water 
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No data available 

IV.B.4. REQUIRED 1«3NIT0RING OF "UNREGULATED" CONTAMINANTS 

Status — Listed (Proposed, 1991) 

Discussion — "Unregulated" contamineuits are those contamineuits for v*iich 
EPA establishes a monitoring requirement but which do not have an associated 
final MCLG, ICX, or treatment technique. EPA may regulate these contaminants 
in the future. 

Monitoring requirement — All systems to be monitored unless a vulnerability 
assessment determines the system is not vulnerable. 

Analytical methodology — Gas chromatogre^hy/mass spectrometry (EPA 525); 
high pressure liquid chromatocpraphy (EPA 550, 550.1). 

Reference — 56 FR 3526 (01/30/91) 

EPA Contact — Drinking Water Standards Division / OGWEW / 
(202) 260-7575 / FTS 260-7575; or Safe Drinking Water Hotline / (800) 426-4791 

SICL - NO DATA 

FISTD- NO DATA 

FIREV- NO DATA 

CERC -

Value — 1 pound (Final, 1989) 

Considers technological or economic feaisibility? — NO 

Discussion — The RQ for benzo (a)pyrene is based on potential 
ceurcinogenicity (groiQ3 B2). This chemical is currently under assessment for 
Ceircinogenicity emd chronic toxicity and the RQ is subject to change in future 
rulemedcing. 

Reference — 54 FR 33418 (08/14/89) 

EPA Contact — RCRA/Superfund Hotline 
(800) 424-9346 / (202) 260-3000 / FTS 260-3000 

SARA - NO DATA 

RCRA -

Status — Listed 

Reference ~ 52 FR 25942 (07/09/87) 

EPA Contact — RCRA/Superfund Hotline 
(800)424-9346 / (202)260-3000 / FTS 260-3000 

TSCA 
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No data available 

OREF - None 
IREF - None 
CREF - Brune, H., R.P. Deutsch-Wenzel, M. Habs, S. Ivankovic and D. Schmahl. 

1981. Investigation of the tumorigenic response to benzo[a]pyrene in 
aqueous caffeine solution a^^lied orally to Sprague-Dawley rats. J. 
Cancer Res. Clin. Oncol. 102(2): 153-157. 

CREF - Clement Associates. 1990. Ingestion dose-response model to 
benzo(a)pyrene. EPA Control No. 68-02-4601. 

CREF - lARC (International Agency for Reseeirch on Cancer). 1983. Certain 
Polycyclic Aromatic Hydrocarbons and Heterocyclic Conpounds. Monographs 
on the Evaluation of Carcinogenic Risk of the Chemical to Man, Vol. 3. 
Lyon, Freince. 

CREF - Knauf, L. and G. Rice. 1992. Statistical Evaluation of Several 
Benzo[a]pyrene Bioassays. Memorandum to R. Schoeny, U.S. EPA, 
Cincinnati, OH. January 2. 

CREF - Neal, J. and R.H. Rigdon. 1967. Geistric tumors in mice fed 
benzo[a]pyrene — A quantitative study. Tex. Rep. Biol. Med. 25(4): 
553-557. 

CREF - Rabstein, L.S., R.L. Peters and G.J. Spahn. 1973. Spontaneous tumors 
and pathologic lesions in SWR/J mice. J. Natl. Ceuicer Inst. 50: 
751-758. 

CREF - Stiteler, W. 1991. Syracuse Research Corixiration, Syracuse, NY. 
Personal communication with R. Schoeny, U.S. EPA, Cincinnati, OH. 

CREF - Thyssen, J., J. Althoff, G. Kimmerle and U. Mohr. 1981. Inhalation 
studies with benzo[a]pyrene in Syrian golden hamsters. J. Natl. Cancer 
Inst. 66: 575-577. 

CREF - U.S. EPA. 1991a. Drinking Water Criteria Document for PAH. Prepared by 
the Office of Health and Environmental Assessment, Environmental 
Criteria eind Assessment Office, Cincinnati, OH for the Office of Water 
Regulations and Standards, Washington, DC. 

CREF - U.S. EPA. 1991b. Dose-Response Analysis of Ingested Benzo[a]pyrene (CAS 
No. 50-32-8). Human Health Assessment Group, Office of Health and 
Environmental Assessment, Washington, DC. EPA/600/R-92/045. 

HAREF- None 
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Appendix D 

Outdoor Exposure Frequencies for the Neighborhoods Near the Industrial Property 

We all know that weather strongly affects the nature and duration of outdoor activities. 
Since weather data are routinely recorded at both O'Hare and Midway Airports, we use 
the weather records from Midway Airport - the closer of the two airports in Chicago --
as a surrogate for activity pattems. Table 8 in the main report summarizes the average 
daily temperatures recorded at Midway Airport from 1961 -1990 (US Department of 
Commerce, 1992). More specifically, the top two rows of data in Table 8 show the 
number of days per year that have average temperatures (denoted T) at or above the 
stated temperature and - by difference - the number of days per year that have 
average temperatures below the stated value. For example, In a typical year at Midway 
Airport, there are 196 day/yr with T > 50 degF and 169 day/yr with T < 50 degF. 

For children, for example, we assume that T strongly Influences the number of days in a 
year on which a child behaves in such a way as to ingest incidentally soils outdoors. In 
particular, we assume the following infonnation in Table 8. 

• For 83 days when T < 32 degF, we assume that no child incidentally ingests 
soil outdoors. On such cold days, the soils outdoors are frozen and/or 
covered with snow and ice. Children may play outside on such days, but they 
cannot ingest the frozen soils. 

• For 119 days when T < 40 degF, we assume that 5 percent of children 
incidentally Ingest some surface soils outdoors. 

• For 169 days when T < 50 degF, we assume that 20 percent of children 
incidentally ingest some surface soils outdoors. 

• For 222 days when T < 60 degF, we assume that 70 percent of children 
incidentally ingest some surface soils outdoors. 

• For 86 days when T > 70 degF, we assume that 100 percent of children 
incidentally ingest some surface soils outdoors. 

From this infonnation and the data in Table 8, we develop a probability distribution for 
the number of days that a child plays outdoors in a typical year as follows. 

First, we use concepts and methods routinely used to analyze reliability data (Cox & 
Oakes, 1984; Crowder et al, 1991; Lee, 1992). To start, we define the condition of 
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"success" as "playing outdoors in warm weather", and we define the event of "failure" as 
"the end to playing outdoors due to cold weather." 

With these routine definitions, we develop the probability density function (PDF) for the 
"time to failure," denoted t and measured in days, in three steps: 

• First, we develop S(t), the complementary cumulative distribution function 
(CCDF) for the t, the "time to failure," by direct interpretation of the behavior 
and the weather data. This curve declines monotonically from 8(0) = 1 to 
S(365) = 0. 

• Second, we derive F(t), the cumulative distribution function (CDF), for the 
"time to failure," by subtraction: F(t) = 1 - S(t). This curve rises monotonically 
fromF(0) = 0toF(365) = 1. 

• Third, we derive f(t), the probability density function (PDF) for the "time to 
failure," by differentiating F(t) with respect to time: f(t) = ̂  F(t). The area under 
this curve equals 1. 

Thus f(t) is the PDF for the number of days in a typical year that a child plays outdoors. 

For children, the graph below shows S(t), the CCDF for the time to failure, i.e., the 
complementary cumulative probability distribution for the number of days in a typical 
year that a child plays outdoors in the neighborhoods near the industrial property. 
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The graph of S(t) for children above plots this information: 

• On warm days, when T equals or exceeds 70 degF, all children play outdoors. 
This corresponds to a plotted point of (t, S(t)) = (86,1.00). 

• On cool days, when T declines to 60 degF, 70 percent of the children 
continue outdoor activities that culminate in soil ingestion. This corresponds to 
plotted point of (t, S(t)) = (143, 0.70). 

• On cooler days, when T declines to 50 degF, only 20 percent of the children 
continue outdoor activities that culminate in soil ingestion. This corresponds to 
a plotted point of (t, S(t)) = (196, 0.20). 

• On cold days, when T declines to 40 degF, only 5 percent of the children 
continue outdoor activities that culminate in soil ingestion. This corresponds to 
a plotted point of (t, S(t)) = (246, 0.05). 

• On freezing days, when T declines below 32 degF, no children continue 
outdoor activities that culminate in soil ingestion. The children go outdoors, 
but they cannot ingest frozen soils. This corresponds to a plotted point of 
f , S(t)) = (282, 0.00). 

For childrerit'tlii?graDh below shows F(t) = 1 - S(t), the CDF for the time to failure, i.e., 
the c*J<^uiat{ye|^Sl^^^^^^^nforthe number of days in a typical year that a child 
plays outdoors in the ne^hEorho^snear the'lndustrial property. 

For children, the graph below plots f(t) = ̂  F(t), the PDF for the time to failure, i.e., the 

probability density for the number of days in a typical year that a child plays outdoors in 
the neighborhoods near the industrial property. This random variable has a median 
equal to 164.2 days and a mean equal to 165.5 days. 
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Using the infonnation in Table 8 for teens, the graph below plots f(t) = ̂  F(t), the PDF 

for the time to failure, i.e., the probability density for the number of days in a typical year 
that a teen plays outdoors in the neighborhoods near the industrial property. This 
random variable has a median equal to 176.7 days and a mean equal to 181.0 days 
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Using the Infonnation in Table 8 for adults, the graph below plots f(t) = ̂  F(t), the PDF 

for the time to failure, i.e., the probability density for the number of days in a typical year 
that an adult plays outdoors in the neighbortioods near the industrial property. This 
random variable has a median equal to 166.6 days and a mean equal to 168.0 days. 
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Appendix E 

Exposure Durations for the Neighbortioods Near the Industrial Property 

As employees of the US Environmental Protection Agency, Israeli and Nelson (1992) 
estimated distributions of the residence times for different groups of US households 
based on data published by the Bureau of the Census. Israeli and Nelson report that the 
distribution for total residence time is essentially an Exponential distribution with a 
different mean value for each different housing group. An Exponential distribution is 
completely characterized by its mean value and is highly skewed (i.e., far from 
symmetric), with a long tail to the right. 

In this report, we accept 49 percent as the fraction of owner-occupied houses in the 
neighborhoods near the industrial property (Ecology & Environment, 1995, Letter). From 
this, we calculate 51 percent as the fraction of non-owner-occupied houses in the same 
neighbortioods. 

On a neighborhood- and site-specific basis, we estimate the 90th percentile of the 
mixed population distribution using infonnation in the column titled "Average Total 
Residence Time, T (years)" of Table IV of Israeli and Nelson (1992). 

First, we draw 4,900 realizations from this distribution: 

Owners ~ Exponential (1 / 11.36 yr) 

and 5,100 realizations from this distribution: 

Renters - Exponential (1 / 2.35 yr). 

Thus, we have simulated a mixed population of 49 percent owners and 51 percent 

renters. 

This mixed distribution has these summary statistics: arithmetic mean = 6.64 yr, 10th 
percentile = 0.42 yr; 25th percentile = 1.15 yr; 50th percentile = 3.20 yr; 75th percentile 
= 8.11 yr; and 90th percentile = 18.00 yr. 
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This graph shows the histogram for this mixed distribution. 
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Abstract 

For a chemical which does not have a source inside a house, the ratio of its dust 

concentration indoors to its soil concentration outdoors is equal to the fraction of house 

dust which is composed of soil. To estimate the fraction of soil in house dust, we 

compiled ratios of the concentrations of a chemical in dust and soil from the scientific 

literature. We find that a LogNormal distribution fits the data extremely well. This 

distribution is suitable for use in public health risk assessments for single-family homes 

in temperate climates. 

Introduction 

Ingestion of indoor dust is a significant exposure pathway for children in residential 

settings (Calabrese and Stanek, 1992, Dust; Stanek and Calabrese, 1992; Chuang et 

al., 1995; Fergusson and Kim, 1991). In one study, Stanek and Calabrese (1992) 

demonstrated that almost 50 percent of the soil ingested by children came from 

ingestion of soil in indoor dust. Measurements of contaminant concentrations in dust are 

difficult to perform and uncommon in human health risk assessment studies. 

Consequently, there is a need for a method to estimate the concentration of a chemical 

in dust from the concentration of that chemical in the soil outside the house. 
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The composition of indoor dust differs strongly from the composition of the soil outside a 

house. Only a fraction of dust is composed of soil which has been carried into the house 

(e.g., on shoes). The remainder consists of dust particles derived from material inside 

the house such as lint from carpets and clothes, human hair and skin, pet hair and skin, 

household plant material, pieces of paper, paint chips, wood chips from furniture, pieces 

of insulation, flakes of construction materials, bacteria, vimses, allergens and insects 

(e.g., dust mites) (Thatcher and Layton, 1995). Some indoor dust is also derived from 

particles carried through open windows by the wind. 

Because indoor dust is a mixture of particles generated inside the house ("particles") 

and soil carried into the house on clothing, the concentration of a chemical in indoor 

dust must fall between its concentration In these two media. If the concentration of the 

chemical in the particles is negligible compared with its concentration in soil, the dust 

concentration of the chemical can be predicted from the physical dilution of the soil by 

particles. We define chemicals for which the particle concentration is negligible 

compared to the soil concentration as "conservative tracer chemicals". 

Assuming that the soil carried into the house has the same chemical and physical 

properties as the outdoor soil, the ratio of the dust concentration to the soil 

concentration for conservative tracer chemicals is equal to the fraction of the household 

dust which consists of soil. For convenience, we define this ratio as the "transfer 

coefficienf (TC) of an chemical (Eqn 1). 

TC , C ^ Eqnl 
^soil 

where C^ust 's the dust concentration of the element with units of mg/kg and Csoii is the 

soil concentration of the element with units of mg/kg. The TC is dimensionless. For 

conservative tracer chemicals, the maximum value for the TC, 1, represents dust 
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composed entirely of soil. The minimum value for the TC, 0, can only occur for dust 

which does not contain any soil. The TC for an element can only exceed a value of 1 if 

there are sources of that element from material inside the house. 

We searched the scientific literature for studies In which the concentration of a chemical 

in both the dust and the soil was measured. To estimate the fraction of soil In house 

dust, we calculated the TC for all data pairs (Cdust. CSOH) which met the criteria for being 

conservative tracer chemicals as discussed below. We model the variability in the value 

of the TC by representing this ratio as a distribution. 

Selection of Data for Conservative Tracers 

We compiled data pairs (Cdust. Csoii) for rare earth elements (Binder et aL, 1986; Bowen, 

1979, Calabrese et al,, 1989; Calabrese and Stanek, 1992, Dust; Calabrese and 

Stanek, 1992, Pica; Davis et al., 1990; Fergusson et al., 1986; Fergusson and Kim, 

1991), heavy metals (Hartwell et al., 1983; Hawley, 1985; Lioy et al., 1992; Stem, 1994), 

several pesticides (Camann and Lewis, 1993; Simcox et al., 1995), and some organic 

compounds (Chuang et al.>, 1995). All the studies were conducted for single-family 

homes in temperate climates. 

For each data pair, we determined whether it was a consen/ative tracer chemical based 

on three criteria. First, the data pair must be for one of the soil-derived elements 

proposed by Fergusson et al, (1986): halfnium (Hf), thorium (Th), scandium (Sc), 

samarium (Sm), cerium (Ce), lanthanum (La), manganese (Mn), sodium (Na), 

potassium (K), vanadium (V), aluminum (Al) and iron (Fe). Fergusson et al. (1986) 

showed that these elements do not have any sources or sinks within houses other than 

soil, other chemicals, such as lead (Pb), arsenic (As), chromium (Cr), polycyclic 

aromatic hydrocarbons (PAHs), and some pesticides, can have higher dust 

concentrations than soil concentrations due to sources inside the house (e.g., lead 
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paint, tobacco smoke) (Hartwell et al., 1983; Lioy et al., 1992; Chuang et a!., 1995; 

Simcox et al,, 1995). Therefore, these compounds are not expected to behave as 

conservative tracer chemicals. Second, the mean dust and soil concentrations for the 

element must be significantly different at the p < 0.05 confidence level. Third, the dust 

concentration must be less than the soil concentration for the element. In theory, the TC 

can reach a maximum value of one for pure soil. In reality, it would be impossible for a 

conservative tracer chemical to have a TC value of one because of the large fraction of 

organic material which is always present in indoor dust (Rothenberg et al., 1989). 

Table 1 shows the data pairs that meet these criteria and their associated TCs. Most of 

the values in Table 1 are mean values except those from Fergusson and Kim (1991) 

which are median values. We think the insights gained from including the median values 

outweigh the uncertainties introduced by their inclusion. It is not possible to test the 

second criteria for the data from Fergusson and Kim (1991) because only the median 

values for dust and soil concentrations are shown in this article. The values in Table 1 

rely on studies with 11 < N < 101 data points. 

^ 

Estimation of the Transfer Coefficient Distribution 

By comparing the histogram of the TC values in Table 1 to Nonnal, Beta, and 

LogNonnal distributions, we conclude that the LogNonnal distribution represents the 

variability in the TC exceedingly well. In Figure 1, InfTC] has been plotted versus zscore. 

The solid line corresponds to a perfect LogNonnal distribution while the points are the 

data from Table 1, All the points are clustered close to this line (r2 = 0.9729) which 

indicates that the data are well described by a LogNonnal distribution. Ott (1995) notes 

that dilution processes tend to produce concentration distributions which are LogNormal 

in character. The fact that the values of TC are distributed LogNonnally is consistent 

with Ott's observation because the variability in the TC results from the dilution of soil by 

particles. 
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We parameterize the LogNonnal distribution as Eqn 2. 

TC - exp[ Nonnal(n, a) ] Eqn 2 

which is identical to 

ln[TC] ~ NormaKu, a) Eqn 3 

where I Q is a LogNonnal random variable, \i is the arithmetic mean of the Normal 

random variable InfTC], and a is the arithmetic standard deviation of Normal random 

variable InfTCI. By fitting a line to the points in Figure 1 using Mathematical, we 

estimate that p, ± se = -0.8767 ± 0.0122 and a ± se = 0.3663 ± 0,0125, Figure 2 shows 

the LogNonnal probability density function (PDF) described by these parameters. This 

figure illustrates the properties of JQ, First, the minimum value for TC is 0, Second, the 

mode of I Q is 0,3639, Third, the median of I Q is 0,4162, Fourth, the arithmetic mean 

and arithmetic standard deviation of TQare 0.4450 and 0.1687, respectively. Figure 3 

shows the cumulative distribution function (CDF) for this fitted distribution with the data 

from Table 1 superimposed on the graph. The PDF and CDF are altemative ways to 

represent the same infonnation. 

Even though a LogNormal distribution is defined from 0 to infinity, the probability of 

having a TC value greater than 1 is less than 1 percent given these fitted parameters. 

In practice, we recommend truncating the distribution of I Q at a maximum of 1 because 

TC values ^1 are only possible for non-conservative tracer chemicals. Therefore, 

tmncating the distribution at a maximum of 1 will change the distribution by only a 

negligible amount. 
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Discussion 

The fraction of soil in house dust is a random variable which closely follows a 

LogNonnal distribution with an arithmetic mean of 0.445 and an arithmetic standard 

deviation of 0.1687. The arithmetic mean and arithmetic standard deviation IndQ] are 

-0.8767 and 0.3663, respectively. This parametric distribution is suitable for use in 

human health risk assessments for single family homes in temperate climates. These 

findings are consistent with the conclusions of Calabrese and Stanek (1992, Dust) that 

the mean fraction of indoor dust originally derived from soil is 0.313. Therefore, for a 

conservative tracer chemical. Its concentration in house dust is expected to be less than 

half its concentration in the soil outside the home. 

In this paper, we compare the bulk chemical compositions of soil and indoor dust 

because these were the only properties which were measured in the original studies. If 

the data were available, it would be more accurate to compare the chemical 

compositions of the two media for each particle size. Estimating the TC in this manner 

would eliminate the potentially confounding effect that some particle sizes may be 

preferentially transported Into houses relative to other sizes. 
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Table 1: Estimated Transfer Coefficients 

Element Oust Concentration Soil Concentration Transfer Coefficent 
(mg/kg) (mg/kg) 

Source 

Al 
Al 
Al 
Al 
Al 

Ce 
Ce 

Fe 
Fe • 

Hf 
Hf 

K 
K 

La 
La 

Mn 
Mn 

19.000.0 
25,000.0 
23.900.0 
33.600.0 
47.200.0 

23.6 
25.0 

10,000.0 
10,200.0 

2.0 
2.1 

12.600.0 
13.000.0 

10.0 
11.9 

200.0 
207.0 

66.000.0 
71.000.0 
55.600.0 
66.600.0 
54.000.0 

52.3 
50.0 

40,000.0 
20,000.0 

6.0 
4.1 

25.000.0 
14.000.0 

40.0 
27.4 

1.000.0 
325.0 

0.2879 
0.3521 
0.4299 
0.5045 
0.8741 

0.4512 
0.5000 

0.2500 
0.5100 

0.3333 
0.5146 

0.5040 
0.9286 

0.2500 
0.4343 

0.2000 
0.6369 

3 
2.5 

1 
4 
4 

1 
2.5 

2.5 
1 

2.5 
1 

1 
2,5 

2.5 
1 

2.5 
1 

Na 11.800.0 18.600.0 0.6344 

Sc 
Sc 

Sm 
Sm 

Th 
Th 

V 
V 

2.9 
3.0 

1.2 
1.2 

3.0 
3.4 

30.0 
30.4 

6.8 
7.0 

4.5 
3.9 

9.0 
8.2 

90.0 
66.0 

0.4240 
0.4286 

0.2667 
0.3128 

0.3333 
0.4172 

0.3333 
0.4606 

1 
2.5 

2.5 
1 

2,5 
1 

2,5 
1 

Sources 
1. Fergusson et al., 1986 
2. Fergusson and Kim, 1991 
3. Davis etal., 1990 
4. Calabrese et al., 1989 
5. Bowen, 1979 

25 Apnl 1996 © Alceon, 1996 



Figure 1 

LogNormal Probability Plot for TC 



Rgure 2 

Probability Density Function for TC 
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Cumulative Distribution Function for TC 
with data points superimposed 
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INTRODUCTION 

To estimate the potential risk to himian health that may be posed by the presence of chemical 
compounds in soil or other environmental media, it is first necessary to estimate the human 
exposure dose of each compound. The exposure dose is similar to the administered dose or 
applied dose of a laboratory experiment. The exposure dose is then combined with an estimate 
of the toxicity of the compound to produce an estimate of risk posed to hxmian health. 

The estimate of toxicity of a compoimd, termed the dose-response value, can be derived fi'om 
human epidemiological data, but it is most often derived from experiments with laboratory 
animals. The dose-response value can be calculated based on the administered dose of the 
compoimd (similar to the human exposure dose) or, when data are available, based on the 
absorbed dose, or intemal dose, of the compound. 

In animals, as in humans, the administered dose of a compound is not necessarily completely 
absorbed. Moreover, differences in absorption may exist between laboratory animals and 
humans, as well as between different media and routes of exposure. Therefore, it is ofien 
inappropriate to directly apply a dose-response value to the human exposure dose. In many 
cases, a correction factor in the calculation of risk is needed to account for differences between 
absorption in the dose-response study and absorption likely to occur upon human exposure to a 
compound. Without such a correction, the estimate of human health risk could be over- or 
under-estimated. 

This correction factor is defined here as the absorption adjustment factor, or AAF. The AAF is 
used to adjust the human exposure dose so that it is expressed in the same terms as the doses 
used to generate the dose-response curve in the dose-response study. The AAF is the ratio 
between the estimated absorption factor for the specific medium and route of exposure, and the 
known or estimated absorption factor for the laboratory study from which the dose-response value 
was derived. 

In some cases, AAFs can be derived from data within a single experiment if an appropriate 
measure of absorption is compared between different routes of administration and/or sample 
matrices. In other cases, a single experiment may quantitate total fractional absorption for only 
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one matrix and route of exposure. AAFs can be derived from such experiments if coupled with 
data from other experiments that quantitate the absorption from the route and matrix used in the 
dose-response study. In this case, the AAF is derived using the following equation: 

AAF = (fraction absorbed from the environmental exposure)/ 
(fraction absorbed in the dose-response study). 

The use of an AAF allows the risk assessor to make appropriate adjustments if the efficiency of 
absorption between enviroiunental exposures and experimental exposures is known or expected 
to differ because of physiological effects and/or matrix or vehicle effects. Absorption adjustment 
factors can be less than one or greater than one. If the absorption from the site-specific exposure 
is the same as absorption in the laboratory study, then the AAF is 1.0. An AAF of 1.0 does not 
indicate that absorption is 100%. It indicates that absorption is known or estimated to be the 
same as that in the dose-response study. 

EPA explicitiy discusses the appropriateness of using absorption/bioavailability factors in the 
Guidelines for Exposure Assessment (EPA, 1992a). For instance, EPA states: 

The applied dose, or the amount that reaches exchange boundaries of the skin, lung, or 
gastrointestinal tract, may often be less than the potential dose if the material is only 
partly bioavailable. Where data on bioavailability are known, adjustments to the potential 
dose to convert it to applied dose and intemal dose may be made. 

This may be done by adding a bioavailability factor (range: 0 to 1) to the dose equation. 
The bioavailability factor would then take into account the ability of the chemical to be 
extracted from the matrix, absorption through the exchange boundary, and any other 
losses between ingestion and contact with lung or gastrointestinal tract. 

The Guidelines for Exposure Assessment discuss the issues of absorption and bioavailability 
throughout the document, indicating EPA's current understanding that the inclusion of properly 
documented absorption adjustment factors is a scientifically appropriate and important aspect of 
the risk assessment process. The Absorption Adjustment Factors derived here take into account 
matrix-specific bioavailability as well as knowledge of PAH pharmacokinetics. These AAFs 
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should be used in the calculation of the Average Daily Doses (ADD) that are necessary to 
quantitatively estimate potential risk to human health. 

In this paper, the route of exposure and the experimental matrix (diet, drinking water, com oil 
gavage, etc.) used in the experimental studies from which the relevant dose-response value was 
derived are sununarized for the polycyclic aromatic hydrocarbons (PAHs). In addition, the 
scientific literature on the absorption and bioavailability of PAHs has been reviewed for the 
relevant routes of exposure and matrices. Based on these data, scientifically defensible oral-soil 
and dermal-soil AAFs have been derived. The information and methods used to derive these 
AAFs are described below. 

Although it is possible in theory, absorption experiments in humans that are suitable for AAF 
derivation have not been executed. Thus, AAFs are derived fix>m animal studies. Because AAFs 
can be derived from multiple scientific studies using different animals species and strains and 
different experimental conditions, there is scientific uncertainty concerning the true AAF for the 
human exposure situation. This uncertainty can be incorporated into the risk assessment process 
by deriving distributions for the relevant AAFs. Accordingly, oral-soil and dermal-soil AAFs for 
PAHs are derived here both as point estimates for deterministic risk assessments and as 
distributions for probabilistic risk assessments. 

ABSORPTION FROM THE DOSE-RESPONSE STUDIES 

Potentially carcinogenic PAH are routinely evaluated using the comparative potency approach 
described in EPA (1993). With this approach, all potentially carcinogenic PAH are assessed in 
terms of their benzo(a)pyrene toxic equivalent concentrations, and EPA's cancer slope factor for 
benzo(a)pyrene is used. . 

Derivation of Cancer Slope Factor for Beiizo(a)pyrene 

The risk assessment of potentially carcinogenic PAHs is performed using the oral cancer slope 
factor (CSF) for benzo(a)pyrene (B(a)P). The oral CSF for B(a)P (7.3 (mg/kg-day)') is the 
geometric mean of four slope factors derived from two rodent feeding studies: Neal and Rigdon 
(1967) and Brune et al. (1981). In tiie first study, CFW mice were dosed with B(a)P in their 
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laboratory chow (diet). The diet was prepared by dissolving benzo(a)pyrene in benzene, mixing 
with wheat flour, evaporating the benzene and mixing the flour-benzo(a)pyrene mixture with 
laboratory chow pellets. In the second, Sprague Dawley rats were also dosed with B(a)P in their 
laboratory chow (diet). 

Gastrointestinal Absorption in Dose-Response Study 

Absorption of B(a)P from food has been shown to be high in both humans and rodents by several 
researchers. Many articles on absorption were reviewed. However, studies that used 
inappropriate scientific methods were rejected for AAF derivation. For instance, studies that 
measured total radiolabel in the feces do not yield useful absorption information, because B(a)P 
metabolites are known to be excreted into bile (see, for instance, Chipman et al., 1981a, 1981b; 
Bowes and Renwick, 1986). 

As an example, data are presented in a paper by Chang (1943) on fecal excretion of 
benzo(a)pyrene and other PAH. This paper caimot be used to estimate gastrointestinal absorption 
of PAH, because the gravimetric method used is nonspecific and does not distinguish between 
unchanged PAH and PAH metabolites. A paper by Flesher and Syndor (1960) is also deficient 
for AAF derivation, because total tritium is measured in feces after oral dosing of rats with ̂ H-3-
methylcholanthrene. This method also does not distinguish between unabsorbed PAH and 
absorbed and metabolized PAH excreted into the bile and feces. 

Other studies are not useful because they only define a small fraction of a PAH's total 
disposition. For instance, in a study by Rees et al. (1971), benzo(a)pyrene was given to rats by 
stomach tube and the PAH was measured in the lymphatic duct. While the presence of B(a)P 
in the lymph indicates that absorption occurred, the experiment is not quantitative. Similarly, 
Foth et al. (1988) measured benzo(a)pyrene absorption in the rat after a continuous infusion into 
the duodenum by measuring B(a)P in the atrial blood and bile. In this case, the conditions of 
the experiment are uimatural, and the experiment does not account for a total mass balance of 
B(a)P. Other studies were rejected for similar reasons. The following principal studies are those 
in which useful absorption information can be gleaned. 
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Hecht et ai (1979) 

Hecht and coworkers (Hecht et al., 1979) fed B(a)P to both humans and F-344 rats and measured 
the unchanged B(a)P in the feces to obtain an estimate of the amount of the compound absorbed. 
Because unchanged B(a)P in the feces can be due to absorbed material that is excreted unchanged 
in the bile, these studies reveal the minimum amount of B(a)P that was absorbed. It is known, 
however, that B(a)P is extensively metabolized. Thus, these estimates of absorption are valid for 
AAF derivation. 

For rats, at least 87% of the B(a)P was absorbed from a low single dose in peanut oil (0.037 
mg/kg). Minimum absorption from medium and high doses (0.37 mg/kg and 3.7 mg/kg) were 
92.2% and 94.4%. The mean absorption of B(a)P in peanut oil in rats was 91.2% (n=30). This 
value was used in AAF derivation. 

When rats were fed a single dose of charcoal-broiled hamburger containing B(a)P (0.002 mg/kg 
body weight), at least 89% was absorbed (n=10). In humans, a high percentage of B(a)P present 
in charcoal-broiled meat was also absorbed (0.0001 mg/kg body weight, assuming 70 kg), 
because no unchanged B(a)P was detected in the feces. Assuming that B(a)P was present in 
feces at 1/2 the detection limit, the minimal absorption is 98.8% (n=8). This study indicates that 
there is no significant difference in absorption between two dietary vehicles in rats. That is, 
absorption of B(a)P from peanut oil and meat was essentially the same. The results with rats and 
humans also indicates that there is no major difference in the gastrointestinal absorption of B(a)P 
between rats and humans. Both of the above values were used in AAF derivation. 

Mirvish et al. (1981) 

Mirvish and co-workers (Mirvish e/ al., 1981) fed B(a)P to Syrian golden hamsters in their diets 
and measured the amount of unmetabolized B(a)P in their feces to determine the efficiency of 
absorption from the gastrointestinal tract. B(a)P was dissolved in com oil, and the com oil was 
added to a commercial rodent chow by two different methods. Animals were treated with B(a)P 
in the diet for 7 to 10 days before samples were collected to give adequate time to reach steady-
state PAH concentrations in the feces and gastrointestinal tract contents. 
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The percentage of fecal excretion of unchanged B(a)P remained relatively constant (94.3% to 
98.0%) as its concentration in commercial diet was varied over a wide range (0.16 mg/kg to 5.5 
mg/kg). Absorption efficiency was not dose-dependent. The minimal gastrointestinal absorption 
of B(a)P was found to be 96.7% for the commercial chow using preparation method I (average 
of results from seven experiments at different dose levels; eleven animal groups, each containing 
3-5 hamsters) or 98% for the commercial chow using preparation method II (one experiment; 
four animal groups, each containing 3-5 hamsters, 1.6 mg/kg). These two values (96.7% and 
98%) were used in AAF derivation. 

3-methyl cholanthrene (3-MC) absorption was also studied in hamsters. 3-MC (1.7 mg/kg) was 
dissolved in com oil and added to a semisynthetic diet consisting of com oil, com starch, 
vitamin-free casein, and alphacel. Minimum gastrointestinal absorption was found to be 93.8% 
in four animal groups containing 3-5 hamsters each. This value is also used in AAF derivation. 

Other experiments demonstrated that B(a)P was absorbed slightiy more efficiently from 
semisynthetic diets than from commercial rodent diets. Addition of com oil to the hamsters' 
semisynthetic diets had little effect on the fecal excretion of unchanged B(a)P, and thus its 
gastrointestinal absorption. Addition of bran to the semisynthetic diets caused a slight lowering 
of gastrointestinal absorption. 

Rabache et al. (1985) 

Rabache and co-workers (Rabache et al., 1985) fed B(a)P to male Wistar rats in their diets for 
22 days and measured the amount of unmetabolized B(a)P in their feces to determine the 
efficiency of absorption from the gastrointestinal tract. B(a)P was dissolved in soy oil and mixed 
with the synthetic ration, which was comprised of 10% soy oil. Young rats were given 1 g 
B(a)P/kg body weight, and adult rats were given 5 g/kg. The minimal gastrointestinal absorption 
of B(a)P was found to be 88.7% for young rats (n=8) and 99.6% for adult rats (n=12). Both of 
these values are used in AAF derivation. 
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Withey et al. (1991) 

Withey and co-workers (Withey et al., 1991) administered pyrene by stomach tube to male 
Wistar rats in an aqueous emulsion and measured the amount of C-14 radiolabel in the blood 
over time to make an estimate of the traditional pharmacokinetic parameter "bioavailability". A 
single dose of pyrene was given to 4 groups of six animals at a concentration ranging from 4-15 
mg/kg as a solution in 20% Emulphor/80% physiological saline. Radiolabeled pyrene was also 
given intravenously for comparison. "Bioavailability" was defined as the area of the blood level-
time curve of radiolabel over a specified time period after oral dosing (0-8 hours) divided by the 
corresponding area of the curve for intravenous dosing. 

"Bioavailability" was found to vary from 65% to 84% depending on dose level. This 
pharmacokinetic parameter has its basis in classical drug studies where the circulating blood level 
of the parent (unmetabolized) drug is of primary interest. However, this parameter does not 
provide an optimal estimate of a chemical's gastrointestinal absorption, because the fraction of 
the chemical or its metabolites that is bound to tissues is not properly counted. 

For this reason, the urinaiy excretion data over 6 days were also used to derive an estimate of 
absorption for each group. Absorption was estimated as the fraction of total radiolabel excreted 
in the urine after oral dosing divided by the firaction excreted after intravenous dosing. Because 
the fraction excreted in the urine at day 6 post-dosing was slightiy higher at every dose level for 
oral dosing compared to intravenous dosing, the estimates of gastrointestinal absorption are 100% 
for all four dose groups. 

For each dose group, the blood level estimate of "bioavailability" was averaged with the urinary 
estimate of gastrointestinal absorption to derive an estimate of gastrointestinal absorption. These 
estimates are: 92%, 82.5%, 86.5%, and 87% for doses ranging from 4-15 mg/kg. The average 
of these four estimates (87%) is used in AAF derivation. 
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Grimmer et aL (1988) 

Grimmer and co-workers (Grimmer et al., 1988) administered chrysene by stomach tube to 
unfasted male Wistar rats in a solution of 33% dimethylsulfoxide and 66% com oil. Eight rats 
weighing 200-250 grams received a single dose of 50 ug chrysene. Assuming an average weight 
of 225 g, the dose was 0.22 mg/kg. Feces and urine were collected for four days. Unchanged 
chrysene and specific metabolites were analyzed. The fraction of the unchanged chrysene in the 
feces was determined. This serves as an estimate of minimal gastrointestinal absorption. 
Average absorption for the eight rats was 86.9%. This value was used in AAF derivation. 

Bartosek et al. (1984) 

Bartosek and co-workers (Bartosek et al., 1984) administered benz(a)anthracene, chrysene, or 
triphenylene to female CD-COBS rats by stomach tube in an aqueous emulsion of 10% Pluronic 
F68 emulsifier and 90% olive oil. Animals were fasted for 24 hours prior to being given a single 
oral dose of the PAH. Each group consisted of 3-5 rats weighing 150-170 g. PAH were given 
at single doses of 11.4 and 22.8 mg/ animal, which corresponds to 71.3 mg/kg and 142.5 mg/kg, 
assuming an average weight of 160 g. Rats were allowed access for food 3 hours after dosing. 
The fraction of administered dose of the unchanged PAH recovered in the feces after 72 hours 
was taken as an estimate of the minimal absorption. Results were 94% for benz(a)anthracene, 
75% for chrysene, and 97% for triphenylene. These three values were used in AAF derivation. 

Summary of Absorption Data for Dose-Response Studies 

The 13 data points shown in Table 1 are averaged to derive a point estimate of the 
gastrointestinal absorption of B(a)P and other PAH in the dose-response studies from which the 
cancer slope factor for B(a)P and the RfDs for various noncarcinogenic PAH were derived. This 
value is 92%. 

Table 1 demonstrates that gastrointestinal absorption of PAHs given in oil vehicles or in the diet 
is generally high. While there is some variability in the data, no consistent trend is apparent that 
would lead one to conclude that absorption of one PAH differs significantiy from another. 
Accordingly, all of the data is merged here to represent the absorption of all PAHs of interest. 
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However, each data point in a study was not given equal weight in deriving the final estimate 
of oral absorption in the dose-response studies. For instance, in the Mirvish et ai study the 
96.7% value represents the average of results from seven experiments at different dose levels. 
There were eleven animal groups, each containing 3-5 hamsters. Thus, this value represents 
experiments with 33-55 animals. The 98% value represents one experiment at one dose group. 
There were four animal groups, each containing 3-5 hamsters. Thus, this data point represents 
12-20 animals. 

There are many ways to summarize such a large and diverse set of experimental results. Table 
2, however, demonstrates that the resulting estimate of absorption in the PAH dose-response 
studies is not particularly sensitive to the manner of summarizing the available data. 

DERIVATION OF ORAL-SOIL AAF FOR POLYCYCLIC AROMATIC 
HYDROCARBONS (PAH) 

Three studies were identified in which the gastrointestinal absorption of PAHs was measured 
from a soil matrix. These include Goon et ai (1991), Rozett et aL (1996), and Weyand et ai 
(1996). Each of these studies is discussed below. 

Rozett et ai (1996) 

Rozett et al. (1996) studied the bioavailability of pyrene from manufactured gas plant (MGP) 
residue (coal tar) by comparing the urinary pyrene metabolite levels in animals receiving pyrene 
as pure MGP residue in their diet to animals receiving pyrene as MGP contaminated soil in their 
diet. The contaminated soil was aged composite soil from MGP sites. It was fractionated into 
seven particle size ranges from 1 mm to < 0.150 mm. Soil was added to powder diets from PMI 
Feeds, Inc. (rodent laboratory diet #5001) (20% soil / 80% powder diet). Pure MGP residue was 
added to gel diets from Bio-Serv (rodent basal gel diet) (0.003%, 0.03%, 0.1%, &. 0.3% coal tar). 
Groups of female CDl mice were fed soil or pure MGP residue for 15 days. Urine was collected 
on day 15. The level of pyrene metabolites (1-hydroxypyrene, 1-hydroxypyrene glucuronide 
conjugates, and 1-hydroxypyrene sulfate conjugates) were determined by HPLC using 
fluorescence detection (Singh et al., 1995). 
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"Bioavailability" is defined by the authors as the amount of pyrene and metabolites excreted in 
the urine over 24 hours on day 15 divided by the amount of pyrene ingested on day 15 x 100. 
The amount of pyrene and metabolites excreted into the urine as a fraction of the amount 
ingested in the last 24 hours is not, itself, a direct measure of bioavailability. It is also not a 
quantitative measure of total absorption of pyrene from the diet, because PAH and PAH 
metabolites are efficientiy excreted into the feces via the biliary system. However, the level of 
pyrene and its metabolites in urine on day 15 gives a measure of the steady state level of pyrene 
excretion. Any pyrene or pyrene metabolite found in the urine necessarily derived from pyrene 
that was absorbed in the gastrointestinal tract. Because the term bioavailability has a very 
specific meaning in the fields of toxicology and risk assessment, the metric used by the authors 
is here renamed "fi'actional urinary excretion." However, the ratio of "fractional urinary 
excretion" between study groups is a good measure of relative bioavailability, as will be shown 
below. 

As shown in Table 3, "fiactional urinary excretion" of pyrene from MGP residue (coal tar) added 
to the diet varied from 12.8% to 24.1% depending on the dose level. As shown in Table 4, 
"fiactional urinary excretion" of pyrene from MGP residue-containing soil varied from 1.7% to 
14.8% depending on the size fiaction of the soil sample. In addition, "fractional urinary 
excretion" of pyrene from unfiactionated soil (< 1 mm particle size) was reported to be 6%. 

The ratio of "fiactional urinary excretion" from MGP contaminated soil to "fiactional urinary 
excretion" from pure MGP residue as a dietary additive is a direct estimate of the oral-soil AAF 
(which is a measure of relative bioavailabilty between pyrene in soil and pyrene in food). It is 
a measure of the degree to which the soil matrix increases or decreases the absorption of pyrene 
compared to pyrene in the diet. The AAF estimates presented in Table 6 were derived by taking 
the ratios of "fiactioned urinary excretion" in Table 4 to the appropriate value from Table 3, based 
on the dose of pyrene. 

Weyand et aL (1996) 

Weyand et aL (1996) studied the bioavailability of pyrene from manufactured gas plant (MGP) 
residue (coal tar) by comparing the urinary pyrene metabolite levels in animals receiving pyrene 
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as methylene chloride extracts of MGP contaminated soil in their diet to animals receiving pyrene 
as MGP contaminated soil in their diet. The two contaminated soil samples were aged soils from 
MGP sites. They were sieved to a particle size range of less than or equal to 0.150 mm. Soil 
was added to powder diets from PMI Feeds, Inc. (rodent laboratory diet #5001) (20% soil / 80% 
powder diet). MGP contaminated soil extracts were added to gel diets from Bio-Serv (rodent 
basal gel diet) so that the same amount of pyrene was present as in the soil/diet groups. Groups 
of female BgCjF, mice were fed soil or organic extract for 14 days. Urine was collected on day 
14. The level of pyrene metabolites (1-hydroxypyrene, 1-hydroxypyrene glucuronide conjugates, 
and 1-hydroxypyrene sulfate conjugates) were determined by HPLC using fluorescence detection 
(Singh et ai, 1995). 

As above, "fractional urinary excretion" is defined as the amount of pyrene excreted in the urine 
over 24 hours on day 15 divided by the amount of pyrene ingested on day 15 x 100. The 
amount of pyrene excreted into the urine is not, itself, a direct measure of total absorption of 
pyrene from the diet, because PAH are efficientiy excreted into the feces via the biliary system. 
However, the level of pyrene and its metabolites in urine on day 15 gives a measure of the 
steady state level of pyrene excretion. 

As shown in Table 5, the "fiactional urinary excretion" of pyrene from soil #1 was 6.2% and 
from soil #2 was 1.7%. The "fiactional urinary excretion" of pyrene from the organic extract of 
soil #1 was 17.2% and from soil #2 was 16.1%. 

The ratio of "fractional urinary excretion" from MGP contaminated soil to "fractional urinary 
excretion" from an extract of MGP contaminated soil added to diet is a direct estimate of the 
oral-soil AAF. It is a measure of the degree to which the presence of soil increases or decreases 
the absorption of pyrene from the diet. The AAF from soil #1 was 36% (6.2%/17.2% x 100). 
The AAF from soil #2 was 11% (1.7%/16.1% x 100). This stiidy clearly shows that pyrene in 

aged soil is absorbed in the gastrointestinal tract to a lesser degree than is pyrene added to rodent 
food as an organic extract. 
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Goon et ai (1991) y 

Goon, et ai (1991) studied the bioavailability of benzo(a)pyrene administered orally as the pure 
chemical or as B(a)P adsorbed onto soil particles. Additional information about the study was 
obtained directly from the authors (Goon et al., 1996). Male Sprague-Dawley rats were gavaged 
witii B(a)P mixed witii "'C-B(a)P in solution [0.5% Tween 80 (v/v in saline)] (1.0 fimol B(a)P/kg, 
25 nCi/kg) or the equivalent dose adsorbed onto a clay-based soil or a sand-based soil. The soils 
consisted of 2.5 g solid/kg containing 100 mg/kg B(a)P. All animals received 7.5 mL of 0.5% 
Tween 80 (v/v in saline). 

Venous blood samples were collected from the retro-orbital plexus at predetermined times (0.5, 
1, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144, and 168 hours), and excreta were collected continuously 
over 24-hour intervals. After 168 hours, animals were euthanized and tissues collected for 
analysis. Total radioactivity was measured by liquid scintillation in blood, urine, feces, and 
tissues. 

The sandy soil was classified as a loam which was very low in organic content, 0.04%. It 
contained 47% sand, 41% silt, and 12% clay. The pH was 6.5, and the cation exchange content 
was 0.6 meq/100 g. The clay-based soil was classified as a clay with low organic content, 
1.35%. It contained 6% sand, 18% silt, and 76% clay. The pH was 7.0 and the cation exchange 
content was 45.65 meq/100 g. The sandy soil was ground and sonic sifted. The clay-based soil 
was dried and passed through a Brickman ultra-centrifiigal mill. In both cases, the particles size 
was small, <100 um. Both soils were washed twice with methylene chloride and dried before 
use. This desfroyed any microbial activity that may have existed in the soils. 

B(a)P and '*C-B(a)P were added in acetone to soils. The acetone was evaporated, leaving soils 
that were 100 ppm in B(a)P and 10 uCi/g in radiolabel. Animals were administered the soil-
adsorbed B(a)P at various time intervals after the soil and the B(a)P were mixed: 1 day, 7 days, 
30 days, 6 months and one year. Animals were fasted for 12 hours prior to dosing. Two hours 
after dosing, Purina Rodent Chow 5001 and water were available ad libitum. 

Relative bioavailability was measured by comparing the area under the blood curve (AUC) for 
total radiolabel over the entire 168 hour experimental period during which blood B(a)P levels 

12 



O G D E N ENVIRONMENTAL AND ENERGY SERVICES 

were measured. Radiolabel in the blood represents a fraction the B(a)P that was absorbed in the 
gastrointestinal tract, including parent B(a)P and metabolites. 

The use of AUC measurements is a classic approach in drug pharmacology where systemic 
bioavailability is defined as the blood AUC after an intravenous dose divided by the AUC after 
an oral dose. In the case of drugs, the amount of parent dmg circulating in the blood over a long 
period of time is of primary interest, because, in most cases, first pass metabolism of the drug 
in the liver reduces the drug efficacy. Metabolites are inactive and are excreted. Thus, total 
blood levels of parent drug is of greater interest than is drug plus metabolites. 

This same concem is not relevant for the risk assessment of PAHs, such as B(a)P, because B(a)P 
is not direct acting. No toxic effects are manifested by the parent, unmetabolized B(a)P. Instead, 
metabolism is required for toxicity. It is the metabolites of B(a)P and other PAH that bind to 
cellular macromolecules, such as DNA, and cause adverse effects in various tissues. Metabolism 
of PAHs occurs in all tissues, and orally administered B(a)P has caused tumors in laboratory 
animals in various tissues, including stomach, lung, esophagus, larynx, and others. B(a)P 
metabolism is also multistepped. In order for the B(a)P diol epoxide, the putative mutagenic 
metabolite, to be formed, several metabolic conversions involving several enzymes must occur. 

Thus, in some cases the toxic metabolite in a distant tissue, such as the lung, is caused by a 
B(a)P molecule that was absorbed through the gastrointestinal tract, was not metabolized in the 
liver, circulated through the blood, and was metabolized in several steps in the lung. In other 
cases, the toxic lung metabolite was formed by a molecule that was absorbed though the 
gastrointestinal tract, was metabolized to an intermediate metabolite in the liver, and circulated 
through the blood as a B(a)P metabolite, and was metabolized several more times in the lung to 
a toxic metabolite. 

In addition, B(a)P and B(a)P metabolites excreted in the bile are known to be reabsorbed in the 
gastrointestinal tract by a process known as enterohepatic recirculation (Chipman et al., 1981). 
Thus, some B(a)P metabolites are known to be excreted into the bile and the gastrointestinal 
tract. When present in the gastrointestinal tract parent B(a)P can be reabsorbed. In addition, 
conjugated metabolites, such as glucuronide, sulfate, and glutathione metabolites can be de-
conjugated by enzymes residing in bacteria present naturally in the gastrointestinal tract. After 
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de-conjugation, the primary metabolite can and is reabsorbed. After reabsorption, it can travel 
to a distant tissue via the systemic circulation and cause damage. 

Thus, for B(a)P and other PAHs, the circulating blood level of just the parent compound is not 
a relevant dose metric. Instead, the total B(a)P dose including parent B(a)P and metabolites is 
the critical parameter to measure. This is because some metabolites are directly toxic to distant 
tissues, some metabolites are metabolic precursors of secondary metabolites that are toxic to 
distant tissues and can be formed therein, and some metabolites can be excreted and reabsorbed 
and can later cause damage in distant tissues, including the gastrointestinal tract itself 

While the total blood radiolabel AUC from 0-168 hours does not define the fraction of the 
administered B(a)P that was absorbed in an animal or a treatment group, the ratio of AUC 
measurements for two treatment groups administered the B(a)P by the same route of exposure 
in an excellent measure of relative bioavailability between the two treatment groups. 

For the clay-based soil, relative bioavailability was 49-59% for the soils that were aged from 1-30 
days. For clay-based soils aged 6 months and one year, the relative bioavailability was 39% (see 
Table 6). For the sand-based soil, relative bioavailability was 67-70% for the soils that were 
aged from 1-30 days. For clay-based soils aged 6 months and one year, the relative 
bioavailability was 54% and 62%, respectively (see Table 6). 

The above data show that reduction in PAH bioavailability due to soil adsorption is a time 
dependent phenomenon. This result is consistent with other studies on chemical adsorption to 
soil. Because the PAH compounds of interest in most soil risk assessments were released to the 
soil environment many years ago, the results for the 6 month and one year aged soils are used 
for AAF derivation. These results are 38.6% for clay-based soil and 58.3% for sand-based soil. 

These values represent "relative bioavailability" compared to the control animals in which the 
B(a)P was administered as a solution. They are not direct estimates of gastrointestinal absorption 
in the soil-treated animals and they are not direct estimates of AAFs. Accordingly, the values 
must be modified before they can be used to derive AAFs. As shown below, the relative 
bioavailability value must be multiplied by the absorption in the control animals: 
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Absorption from soil = Relative Bioavailability x Absorption from solution 

The Goon et a/. (1991) study did not measure total B(a)P absorption in the control animals which 
received B(a)P in solution. However, four of the absorption estimates presented in Table 1 were 
from experiments in which the PAH was administered in solution. The results of the five values 
were averaged to yield 88.5%. Thus, the absorption from sandy soil is estimated as 52% (58.3% 
X 88.7%). The absorption from clay-based soil is estimated as 34% (38.6% x 88.5%). The 
AAFs are defined as the absorption from soil divided by the absorption from diet x 100. They 
are as follows: 

AAF oral-soil (sandy) = 52% / 92% = 0.57 
AAF oral-soil (clay-based) = 34% / 92% = 0.37 

Ogden notes that the two soils studied were very low in organic content (0.04% and 1.35%). 
Certainly, the value for sandy soil is much lower than a typical soils. For instance, in its Risk 
Based Corrective Action guidance, the ATSM assumes 1% as a default value for typical soils. 
Accordingly, the AAF for clay-based soil is probably more typical of average soils than the AAF 
for sandy soil. 

Goon et ai (1990) 

In an earlier experiment. Goon et al. (1990) studied the bioavailability of B(a)P in aqueous 
solution, in laboratory chow, in imaged sandy soil and in imaged clay-based soil. Additional 
information was obtained directiy from the authors (Goon et al., 1996). The study was performed 
in the same manner as the one described above with the exception that 4 male rats and 4 female 
rats were placed in each of four study groups, including rodent chow. 

In that study, the bioavailability from rodent food was shown to be less than from solution. 
When the area under the curve for total radioactivity in blood over 168 hours was compared, the 
solution group was 5944 pmol-hour/mol and the rodent chow group was 3179 pmol-hour/mol. 
Thus, bioavailability from food was 54% compared to aqueous solution. Bioavailability of B(a)P 
administered in slurries adsorbed onto small particles from sand and clay-based soils were also 
decreased relative to B(a)P in solution (47% for sandy soil and 28% for clay-based soil). 
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Ogden has rejected the data from the Goon et al. (1990) study for AAF derivation and relied 
solely on the 1991 experiment for several reasons. First, the results for B(a)P adsorbed to rodent 
chow and dissolved in a solution with an aqueous emulsifier are at variance from the results 
presented in the large literature on B(a)P absorption discussed above. Table 1 shows that in all 
other studies of B(a)P and other PAHs, absorption is high and similar for PAHs adsorbed to food 
(either meat or rodent chow), dissolved in vegetable oils, or dissolved in emulsifier solutions. 

Second, the results for each treatment group were averaged over data for both males and females, 
which had very different starting and ending body weights (see Table 7). The starting body 
weight for female rats was 75% to 81% of the body weight of the male rats. Goon et al. in the 
1990 experiment averaged the blood radioactivity levels for 3-5 male and 4-5 female rats in each 
treatment group and then calculated a group-wide area under the curve (AUC). They did not 
calculate the AUC for the total 168 hour experiment for each animal and then average the 
animal-specific AUC's. Thus, a sex-specific reduction in bioavailability or any source of animal-
specific variability could lead to artifacts in the group average AUCs. 

Third, Ogden has uncovered such variability by evaluating the data for body weights and the 
weight gain over the experimental period. Table 7 shows the weights of the animals in each 
group before the 12 hour fast period, after the fast period and before dosing, and after the 7 day 
experiment. Ogden notes that the variability in the weights of the male animals in the solution 
group and in the sandy soil group is much higher than the variability in any of the other groups. 
In particular, the variabilities in the post experiment weights for animals in the food groups (male 
and female) were much smaller than the variability in the male solution group. (The variability 
in animal weights in all groups, including the solution group, was much smaller in the 1991 
experiment (see Table 9)). 

Lastly, when the pre-experiment and post-experiment animal weights (see Table 7) are compared, 
an interesting result is apparent. The weight gain over the experimental period is much higher 
for the solution group than the food group (see Table 8). On average, the males in the solution 
group gained 9% of their initial fasted weight. The females gained 8% of their initial fasted 
weight. However, the males and females in the food group gained 15% and 17% of their initial 
fasted weight, respectively. In the Goon et al. (1991) experiment, the B(a)P-solution group, on 
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average, gained 15% of their initial fasted weight (see Table 9), again showing that the results 
from the 1990 experiment are suspect. 

A reasonable explanation for the anomalous results for B(a)P absorption from food and solution 
doses is that, for some unknown reason, the animals in the solution group consumed less food 
immediately after the B(a)P dosing than did the group that received B(a)P in a slurry of rodent 
chow. If the animals in the food group ate more food, then the B(a)P was diluted by a large 
volume of soil and water with a greater surface area of material to which it could bind, 
preventing gastrointestinal absorption. With the solution group, if they ate less food following 
the dosing, then the B(a)P present in their empty stomachs in an emulsified aqueous solution 
could be rapidly absorbed, perhaps quantitatively. 

Ideally, one could test this hypothesis by studying food consumption records. However, food was 
provided ad libitum, and daily animal-specific food consumption was not monitored. However, 
the weight g£dn over the period is a rough measure of food consumption. 

The 1990 experiment is also suspect when one compares the male weight gains and the female 
weight gains in each treatment group. In the solution, food, and clay-based soil groups, the 
males gained more weight over the experimental period (10-18% more than the females). 
However, in the sandy soil group, the females gained 91% more weight than the males. Clearly, 
the results for sandy soil are suspect. 

Ogden does not know why certain groups would have consumed more food and gained 
considerably more weight than others. Perhaps radiation-induced or emulsifer-induced gastritis 
or diaharrea was the cause. Although all groups received 7.5 mL of emulsifer, in the solution 
group, this was the only material administered on an empty stomach. In the other four groups, 
this was given with 2.5 grams of solid material, which would have been wetted by the solution. 

Regardless of the reasons for the inadequacies of the 1990 study, the 1991 experiment does not 
suffer from these sorts of variabilities and differences in weight gains. In addition, the 
experiment used only male animals, so the uncertainties and confounding effects of averaging 
the results over animal groups with widely differing body weights and food consumption rates 
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are not seen. Accordingly, Ogden used the data from Goon et al. (1991) in AAF derivation, but 
rejected the use of the Goon et al. (1990) data. 

Summary of Oral-Soil AAFs 

Twelve estimates of the oral-soil AAF for PAHs were derived from three studies, as shown in 
Table 10. For probabilistic risk assessments, a distribution of AAF values is required. Curve 
fitting exercises using Mathematica™* software and using the methods shown in Burmaster (1996) 
determined that the 12 data points best fit a Beta4 distribution with the following characteristics: 
Beta4 (a=l, b=3, c=0.944964, d=0.0699) over die range of 0.07-1.00. Then, Monte Carlo 
simulations were run using Crystal Ball™ software. The mean oral-soil AAF for PAHs after 
20,000 trials was 0.31 with a standard deviation of 0.18. The 50th percentile oral-soil AAF was 
0.27 and the upper 90th percentile oral-soil AAF was 0.57. For deterministic risk assessments, 
a point estimate is needed for the AAF. The average of the twelve values is 0.29. This average 
value is similar to the mean and 50th percentile values from the AAF distribution. Accordingly, 
0.29 is an appropriate point estimate of the oral-soil AAF. 

AppUcability of Oral-Soil AAFs 

These estimates of oral-soil AAFs were derived from studies with B(a)P, a five-ring potentially 
carcinogenic PAH and pyrene, a four-ring noncarcinogenic PAH. Because the AAF estimates 
for the two PAHs were similar and because the gastrointestinal absorption of various potentially 
carcinogenic and noncarcinogenic PAHs is similar (see Table 1), it is appropriate to derive a 
single oral-soil AAF for the carcinogenic and noncarcinogenic risk assessment of all potentially 
carcinogenic PAHs. 

DERIVATION OF DERMAL-SOIL AAF FOR POTENTIALLY CARCINOGENIC 
POLYCYCLIC AROMATIC HYDROCARBONS (PAH) 

Two studies were identified in which the dermal absorption of PAHs was measured from a soil 
matrix. These include Yang et ai (1989) and Wester et ai (1990). These studies are discussed 
below. Estimates of dermal-soil AAFs can be derived from the results of these studies and data 
on absorption from the dose-response studies. 
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Dermal Absorption Studies 

Yang et ai (1989) 

Yang, et al. (1989) measured the percutaneous absorption of benzo(a)pyrene (B(a)P) from 
petroleum crude-fortified soil and from pure petroleum crude oil both in live rats and in in vitro 
studies using excised rat skin (see Table 11). The soil was a loam containing 1.64% organic 
matter, 46% sand, 36% silt, and 18% clay. The B(a)P-soil mixture was prepared by adding the 
radiolabelled crude oil in dichloromethane to the soil. The solvent was removed by rotary 
evaporator. All soils were used within 72 hours of preparation. 

Radiolabelled B(a)P (̂ H-B(a)P) was added at a known concentration for quantification. In the 
in vivo experiments, soil containing B(a)P in crude petroleum or pure crude petroleum containing 
B(a)P was applied to the dorsal skin of the female Sprague-Dawley rats. In both cases, the dose 
of B(a)P was 0.01 ug/cm .̂ For the crude oil, 90 ug/cm^ of oil containing 100 ppm B(a)P was 
applied. For soil, 9 mg/cm^ of soil containing 1 ppm of B(a)P was applied. The dorsal area was 
covered with a non-occlusive glass cell to prevent ingestion of the B(a)P by grooming behavior. 

Absorption was determined by measuring the radioactivity in the urine and feces once daily and 
the urine, feces and tissues at 96 hours. Data from five animals were averaged. After 96 hours, 
cumulative absorption of B(a)P from crude-soaked soil (9.2%) was less than that from the crude 
alone (35.3%). 

In the in vitro experiments, dorsal skin was excised from female Sprague-Dawley rats after 
sacrifice. 350 um skin sections were placed in consoles containing 15 mm diameter Franz 
diffusion cells. The receptor fluid was an aqueous solution of 6% Volpo-20, a nonionic 
surfactant. The absorption was measured by analyzing the surfactant containing receptor fluid 
that bathed the receiving reservoir of the absorption chamber for radiolabelled B(a)P. The 
receptor fluid was sampled once every 24 hours for four days. Data from five trials were 
averaged. Again, 96 hour cumulative absorption was greater for B(a)P in oil (38.1%) versus 
B(a)P in oil-soaked soil (8.4%). 
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Wester et ai (1990) 

Wester et al. (1990) measured the absorption of B(a)P in vivo over 24 hours in the monkey using 
acetone as vehicle or using soil containing B(a)P at the 10 ppm level (see Table 12). The soil 
used contained 26% sand, 26% clay, and 48% silt. The organic content was not specified. The 
B(a)P containing soil was prepared by adding the B(a)P in (7:3, v/v) hexane:methylene chloride. 
The soil was mixed by hand and left open to the air to allow dissipation of the solvent. The 
B(a)P-soil mixture was not aged before use. 

Four female Rhesus monkeys were tested with 40 mg soil/cm^ applied to the abdominal skin. 
The skin area was covered with a nonocculusive cover to prevent loss of soil or ingestion of soil 
by grooming behavior. Percutaneous absorption was measured by comparing the quantity of 
radiolabel ('''C-B(a)P) in the urine following topical application to that following intravenous 
application. Urine was collected for 24 hours. After 24 hours, all visible soil was collected 
from the application site. The skin surface was washed with soap and water, and the monkeys 
were retumed to metabolic cages for urine collection for an additional six days. In vivo, the 
absorption was 51.0% for acetone vehicle and 13.2% for soil. 

In vitro studies were also carried out with viable human cadaver skin in cells of the flow-through 
design. Human serum was used as the receptor fluid. Radiolabel was determined in the receptor 
fluid after 24 hours as well as in the skin after a surface wash v̂ ith soap and water. The amount 
of B(a)P that cannot be removed from the skin with a soap and water wash is designated here 
as "absorbed" for the purposes of AAF derivation. In six experiments with skin from two donors, 
23.8% of the B(a)P was absorbed with acetone vehicle. From soil (10 ppm), 1.45% was 
absorbed in 24 hours. 

Dermal-Soil AAF Derivation 

The fraction absorbed in a 24-hour or 96-hour experiment has little relevance to human risk 
assessment. People who might touch, walk on, or otherwise contact PAH-containing soil would 
only be exposed for a period of 6-12 hours at maximum before washing themselves or before the 
soil would drop off or be rubbed off the skin. The Wester, et al. (1990) paper demonstrates that 
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soap and water wash can remove a large amount of the administered dose (53-91%), even after 
24 hours. Even more would be removed after only 6-12 hours exposure. 

EPA guidance for dermal risk assessment recognizes that the time period of a dermal experiment 
is an important factor to consider when evaluating experimental data. EPA (1992b) has noted: 
"The experiment should provide absorption estimates over a time corresponding to the time that 
soil is likely to remain on skin during actual human exposures." 

Accordingly, the data from the Yang, et ai (1989) and Wester, et ai (1990) experiments should 
be prorated for a reasonable exposure period, such as 6-12 hours. A health-protective way to do 
this is to simply assume that absorption is linear over time. The Yang, et al. (1989) in vitro 
study showed a linear absorption into rat skin from 24-96 hours, but no data are available for the 
0-24 hour period. 

In fact, Kao et al. (1985) have shown that the appearance of radiolabel from topically applied 
benzo(a)pyrene and other chemicals in human, rodent, and other species' skin in the culture 
medium of their in vitro system was exponential, not linear. A distinct time lag is apparent 
before any absorption occurs. A time lag has also been shown for various chlorophenols in 
human skin (Roberts, et al., 1977; Huq, et al., 1986). EPA (1992b) also recognizes that a time 
lag may exist: "time is required after initial contact with the skin for such a steady-state to be 
achieved." Also: "Linear adjustments may not be accurate, since it is unknown how soon steady-
state is established and since steady-state conditions may not be maintained throughout the 
experiment due to mass balance constraints." 

Thus, linear adjustments of 24 hour absorption data to estimate absorption over 6-12 hours may 
overestimate the absorption true absorption, but it is not likely to underestimate absorption. A 
health-protective approach would be to assume that a relevant absorption period is as high as 12 
hours. (EPA in its recentiy proposed Hazardous Waste Identification Rule assumes 8 hour 
exposures.) With this assumption, the Yang et al, 1989 data from the in vitro experiment can 
be adjusted to 0.66% absorption over 12 hours using a linear regression of all four time points. 
The data from the in vivo experiment can be adjusted to 1.15% absorption over 12 hours. The 
96 hour data is used in this case, because tissue-bound B(a)P was measured only for this time 
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point. The 12 hour estimated absorption using a linear regression is only 0.50%, and was thus 
rejected for AAF derivation. . 

The Wester, et al. (1990) data can be adjusted to 6.6% absorption in the in vivo monkey 
experiment over a 12 hour exposure period. Similarly, the 12 hour estimated exposure for the 
in vitro human skin experiment is 0.73%. 

For probabilistic risk assessments, a distribution of AAF values is required. The numerator and 
the denominator of the AAF ratio are defined as separate distributions which are sampled 
independently during the probabilistic risk assessment. 

Curve fitting exercises for the numerator (dermal absorption of potentially carcinogenic PAHs 
from soil) using Mathematical^ software and the methods described in Burmaster (1996) 
indicated that the four data points best fit a Beta4 distribution with the following characteristics: 
Beta4 (a=l, b=5, c=0.146908, d=0) over the range 0-0.12. Monte Carlo simulations were then 
run using Crystal Ball™ software. The mean fractional dermal absorption of potentially 
carcinogenic PAHs after 20,000 trials was 0.02 with a standard deviation of 0.02. 

Curve fitting exercises for the denominator (gastrointestinal absorption of PAHs from dose-
response studies) using Mathematical^ indicated that the 13 data points for absorption in the 
PAH dose-response studies best fit a Beta distribution with the following characteristics: Beta4 
(a=4, b=l, c=0.397, d=0.602697) over the range 0.63-1.00. Monte Carlo simulations were then 
run using Crystal Ball™. The mean fractional gastrointestinal absorption of PAHs in the dose-
response studies after 20,000 trials was 0.92 with a standard deviation of 0.06. 

Monte Carlo simulations of the dermal-soil AAF were then run using these assumptions. The 
mean dermal-soil AAF for potentially carcinogenic PAHs after 20,000 trials is 0.03 with a 
standard deviation of 0.02. The 50th percentile AAF was 0.02, and the 90th percentile AAF is 
0.06. 

For deterministic risk assessments, a single estimate of the dermal-soil AAF is needed. In this 
case, four estimates of the dermal absorption of PAHs from soil were presented: 0.66%, 0.73%, 
1.15%, and 6.6%. In addition, 12 estimates of the absorption of PAHs from the dose-response 
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study were presented in Table 1. The average value is 92%. Four AAF estimates are 0.007, 
0.008, 0.01, and 0.07. The deterministic estimate of the dermal-soil AAF is simply the average 
of the four AAFs, 0.02. This value is similar to the mean and 50th percentile estimates for the 
AAF distribution, and is thus appropriate for use in deterministic risk assessments. 

APPLICABILITY OF DERMAL-SOIL AAF TO OTHER CARCINOGENIC PAHS 

Dermal-soil AAFs have been derived for B(a)P based on four experimental data points with 
B(a)P. However, risk assessment of PAHs involves the calculation of benzo(a)pyrene-toxic 
equivalents, which includes the seven PAHs designated as potentially carcinogenic. The 
following section addresses the applicability of the B(a)P AAF to other potentially carcinogenic 
PAHs. 

Various researchers have investigated the dermal absorption of different PAHs from pure 
mixtures, such as coal tar, or from solvent vehicles, such as acetone. From these studies, data 
on the comparative dermal absorption of various pure PAHs are available, but no studies are 
available on the dermal absorption of various PAHs from a soil matrix. 

For instance, Sanders, et al. (1984) studied the dermal absorption of B(a)P and 
dimethylbenz(a)anthracene (DMBA) in Swiss-Webster mice from an acetone vehicle. The dermal 
absorption was similar for the two PAHs. For instance, at similar dose levels, the amount found 
in the tissues and excreta 24 hours after dosing was 84% for B(a)P and 82% for DMBA. 

Yang and coworkers (Yang et ai 1986a, 1986b) studied dermal absorption of B(a)P and 
anthracene at similar doses from solvent vehicles in the female Sprague-Dawley rat in both in 
vivo and in vitro systems. Absorption was similar for the two PAHs. In vivo, absorption after 
144 hours was 46.2% for B(a)P and 52.3% for anthracene. In vitro, absorption after 144 hours 
was 49.9% for B(a)P and 55.9% for antiiracene. 

Ng and coworkers (Ng et ai , 1992) studied dermal absorption of B(a)P and pyrene at similar 
doses from an acetone vehicle in the hairless guinea pig. Absorption after 24 hours was 73.3% 
for B(a)P and 93.9% for pyrene. In an in vitro experiment, absorption of B(a)P was 67.4% 
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versus 89.9% for pyrene. In another in vitro experiment, absorption of B(a)P was 39.8% versus 
40.8% for pyrene. 

Dankovic and colleagues (Dankovic et ai, 1989) studied the comparative dermal absorption in 
female CD-I mice of 12 high molecular weight PAHs isolated from the 800-850 degree (F) 
complex organic mixture (COM) derived from a coal liquefaction process. Absorption was 
measured as the half life of disappearance of the PAH from the mouse skin. The half life was 
5.0 hours for pyrene. For B(a)P, the half life was 6.7 hours. All other PAH had half lives 
similar to B(a)P, including benz(a)anthracene (6.5 hr), chrysene (7.3 hr), and 
benzo(j/k)fluoranthene (8.1 hr). 

VanRooij et ai (1995) studied the dermal absorption in the blood-perfused pig ear of 10 PAHs 
present in co£d tar. The blood-perfused pig ear was chosen as a test system because pig skin 
resembles human skin morphologically and functionally and because percutaneous absorption 
rates of various chemicals in pig skin are comparable to the rates seen in human skin. 

The absorption after 3.3 hours varied among PAHs. Absorption was greatest for phenanthrene 
and fluorene. Anthracene, fluoranthene, and pyrene showed similar absorption rates that were 
roughly ten times less than those for phenanthrene and fluorene. The 4-6 ring PAHs showed 
substantially lower dermal absorption, which was 100-1000 times less than that seen with 
phenanthrene and fluorene. It should be noted, however, that the maximum fractional absorption 
seen, which was with fluorene, was only 0.004% of the applied dose. 

Of the potentially carcinogenic PAH studied in the above dermal absorption experiments, B(a)P 
showed equal or greater dermal absorption. None of these experiments were performed with soil 
matrices. They all involved applying the PAHs as solutions in organic solvents. 

As noted above, dimethylbenz(a)anthracene, benz(a)anthracene, and benzo(b)fluoranthene were 
absorbed to a degree similar to B(a)P. Chrysene, benzo(k)fluoranthene, indeno[l,2,3-cd]pyrene, 
and dibenzo(a,h)anthracene were absorbed to a lesser degree than was B(a)P. Accordingly, it is 
health protective to use dermal-soil AAFs derived for B(a)P for performing risk assessment of 
all potentially carcinogenic PAH. 
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RELEVANCE TO HUMAN ABSORPTION 

Limited quantitative data are available on PAH absorption in humans. By the oral route, 
absorption of pure B(a)P was shown in one study to be similar in humans compared to that seen 
in rats and hamsters. However, no data are available on the human gastrointestinal absorption 
of PAHs in a soil matrix. The literature presents no basis for presuming that gastrointestinal 
absorption of PAHs from soils would be significantly different in humans and experimental 
animals. 

By the dermal route, several studies are available that document absorption of PAHs from pure 
mixtures, such as coal tar, in human subjects. For instance, Clonfero et al. (1986) measured PAH 
metabolites in the urine of humans dermally exposed to coal tar. Storer et al. (1984) measured 
PAH levels in the blood of humans exposed to coal tar. Finally, Schoket et al. (1990) measured 
aromatic DNA adducts in the skin of humans exposed to coal tar. These and other studies clearly 
demonstrate that absorption of PAHs from pure mixtures or from PAHs dissolved in solvents can 
occur in human skin. 

Only three, however, are available that have quantitated the absorption of pure PAHs or PAHs 
in soil matrices in human skin. As discussed above. Wester et al. (1990) studied the absorption 
of B(a)P in an acetone vehicle and in soil in both monkeys and in human skin in vitro. The 
absorption from acetone was 2.1 times higher over 24 hours in the monkey compared to the 
human skin. From the soil matrix, absorption was 9.1 times higher in the monkey compared to 
the human skin. 

Kao et ai (1985) studied the absorption of B(a)P from acetone in an in vitro system with skin 
from six species, including humans. Absorption over 24 hours was highest in the mouse. 
Absorption in the marmoset, rat and rabbit was similar to that in human skin. Absorption in the 
guinea pig was the lowest. 

Storm et ai (1990) studied the absorption of B(a)P in vitro in flow through diffiision cells ̂ yith 
skin from humans, two rat strains, guinea pig, and two mouse strains. Absorption over 24 hours 
was similar in the mice, rats, and guinea pig. Absorption in human skin, however, was 
significantly lower by 1.5-2 fold. 

25 



O G D E N ENVIRONMENTAL AND ENERGY SERVICES 

Available studies indicate that human skin is less permeable to PAHs in pure form than is rodent 
or monkey skin. Thus, the dermal-soil AAF may overestimate the true AAF for human skin. 
Because the dermal-soil AAFs are derived from data on rats, monkeys, and humans, however, 
they are reasonable, health-protective estimates for use in human health risk assessment. 

SUPPORTING EVIDENCE THAT SOIL ADSORPTION REDUCES 
GASTROINTESTINAL AND DERMAL ABSORPTION OF PAH 

There are several bodies of experimental data that support the concept that soil adsorption over 
time binds and sequesters PAH molecules so that they are unavailable for absorption in the skin 
and gastrointestinal tracts of humans and animals that might contact the affected soils. The 
results of these experiments cannot easily be used to derive a quantitative estimate of the 
lowering in absorption, but they are presented here as scientific justification of the phenomenon. 

Studies on Soil Bioavailability of other Chemicals 

Several studies were identified that compared tetrachlorodibenzodioxin (TCDD) absorption from 
soil to either diet, oil vehicle, or alcohol vehicle. These studies demonstrate that gastrointestinal 
absorption of TCDD is reduced when present as a component of soil or other matrix that can 
adsorb the TCDD. Dioxins and PAHs are two classes of lipophilic chemicals that would be 
expected to behave similarly with regard to soil adsorption. 

For instance. Van den Berg and co-workers (1983) administered PCDDs and PCDFs from fly-ash 
and fly-ash extract to male Wistar rats as a dietary constituent. The absorption from fly ash was 
only 22% of the absorption from extracts. 

Other studies are available in which absorption of TCDD from soil was compared to oil or 
alcohol vehicles. McConnell et al. (1984) investigated absorption in guinea pigs using soil from 
Missouri that contained TCDD. Gastrointestinal absorption from soil was 15-24% of the 
absorption from com oil. 

In a similar experiment, Poiger and Schlatter (1980) studied the effects of soil adsorption on the 
oral bioavailability of TCDD in Sprague-Dawley rats. When TCDD was administered as an 
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aqueous suspension of soil particles that had been in contact with the TCDD for 8 days, the 
fraction of the administered dose that was found in the liver 24 hours 
later was 43% of that found wdth an aqueous ethanol vehicle. 

Similar studies have also been performed in rabbits by Bonaccorsi et al. (1984). Levels of 
TCDD in the liver 7 days after an oral dose of TCDD either in alcohol or in soil from Seveso, 
Italy were compared. The ratio of TCDD absorption from soil relative to alcohol vehicle was 
32% in this study. 

Umbreit et al. (1986) also studied the effect of soil adsorption on 2,3,7,8-TCDD-induced toxicity 
in guinea pigs. Dioxin as a suspension of com oil and acetone (9:1) (6 ug/kg) given to guinea 
pigs by stomach tube caused death in 5 of 8 animals within 5-31 days, and autopsy showed signs 
typical of the TCDD-induced toxicity that is observed in the guinea pig. When the same amount 
of 2,3,7,8-TCDD was placed on soil for only one hour and then administered to the animals, 
similar results were seen. However, contaminated soil from a site in New Jersey containing the 
same or double the amount of 2,3,7,8-TCDD failed to cause any deaths and also failed to induce 
any recognizable signs of TCDD-induced toxicity. Thus, aging of the soil causes decreased 
bioavailability. 

Studies on Effects of Dietary Components on PAH Absorption 

Several studies have been evaluated on the effects of dietary fiber and other food items on PAH 
absorption in the gastrointestinal tract. In general, it has been shown that dietary fiber of various 
types can bind or adsorb PAH and reduce their absorption in the gut of experimental animals. 
For instance, Gulliver et al. (1983) showed that dietary fiber binds dimethylbenz(a)anthracene 
in vitro and decreases solubilization by bile salt solutions by 61-98%. Mirvish et al. (1981) 
showed that B(a)P absorption in rats was reduced from 99.8% in semisynthetic diets having no 
fiber to 95% when wheat bran was added. Kawamura et al. (1988) studied B(a)P absorption 
from various food items in the rat. Absorption was highest when B(a)P was administered in 
triolein oil. When B(a)P was given in different food items that included cellulose, bread, lignin, 
ovalbumin, spinach, and others absorption was reduced to as low as 40% of that seen with 
triolein. Similar results were seen with the release of B(a)P from food items in vitro in artificial 
intestinal fluid. 
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Studies on the Effects of Soil Components on PAH Mutagenicity 

Sato et al. (1987) studied the effects of organic chemicals found in soil on the mutagenicity of 
B(a)P to Salmonella typhimurium. Humic acid and lignin totally inhibited the ability of B(a)P to 
mutate the bacteria in culture. Fulvic acid and water-soluble humic substances inhibited B(a)P -
induced mutagenicity to a lesser degree. It was found that the humic acid inhibited mutagenicity 
by binding the B(a)P and making it unavailable to the bacteria in culture. This was shown by 
mixing B(a)P and humic acid and then extracting the B(a)P by ethyl acetate. In the presence of 
humic acid only 25% of the B(a)P could be extracted compared to controls containing no humic 
acid. All of the added B(a)P could, however, be released after ultrasonication, indicating that the 
humic acid was reducing B(a)P's bioavailability. 

Studies on Solvent Extractability of PAH from Soils 

Karickhoff (1980) showed that PAHs became increasingly more difficult to extract from 
sediments with increasing contact time. For instance, after 4 minutes pyrene was 94% 
recoverable with solvent extraction, but after 122 hours only 36% could be recovered. 
Quantitative recovery after a 72 hour Soxhiet extraction confirmed that the PAH had not 
degraded, but rather was adsorbed tightly to sediment particles. 

Hatzinger and Alexander (1995) showed that butanol extractability of phenanthrene decreased 
from 95% recovery to 61% recovery from a high organic content soil when the mixture was aged 
84 days. The soil was sterilized to prevent bacterial degradation. Greater recoveries after 
Soxhiet extraction confirmed that soil adsorption was the reason for reduced solvent extraction 
efficiency. 

Studies on Bacterial Degradation of PAH in Soils 

Hatzinger and Alexander (1995) introduced phenanthrene into high organic content soils that had 
been sterilized to remove organisms that might degrade the PAH. After aging the phenanthrene 
in the soil for varying periods of time (29 weeks, 45 weeks), a phenanthrene-degrading organism 
was introduced. After a month, 60% of the phenanthrene was degraded in the imaged control. 
Bacterial degradation was diminished in the aged soils. Degradation plateaued at 45% for the 
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29 week soil and at 40% for the 45 week soil. Adsorption of the PAH to the soil was 
responsible for the reduction in its bioavailability to microorganisms. 

Weissenfels et al. (1992) studied the biodegradation of PAHs in soils from a closed coking plant. 
PAHs were not degraded by autochthonous organisms or after inoculation with bacteria known 
to degrade PAHs. However, rapid degradation of PAHs was observed when PAHs were 
extracted from the soil by an organic solvent and then re-introduced into the extracted soil 
material. Sorption of the extracted PAHs onto the extracted soil followed a two-phase process. 
The authors described the slow phase of sorption as migration into less accessible sites within 
the soil matrix. The authors concluded that the PAHs so sorbed within the soil matrix are non-
bioavailable and non-biodegradable. The initial soil was extracted with water and assayed for 
toxicity with bioluminescent bacteria. No toxicity was observed in the aqueous phase. 

Studies on Reduction in Chemical Toxicity after Aging in Soil Matrices 

Edwards et al. (1957) showed that the lethal dose of lindane and aldrin in Drosophila 
melanogaster increased as soil organic content increased. The LD50 for lindane varied from 0.25 
mg/kg in soils containing 0.5% organic matter to 8.6 mg/kg in soils containing 40% organic 
matter. For aldrin, the results were similar. Peterson et al. (1971) reported a similar result for 
DDT in Drosophila melanogaster. The LDjo increased from 43 to 790 mg/kg as the fraction 
of organic matter in the soil increased. 
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SUMMARY 

The point estimate Oral-Soil AAF derived for deterministic risk assessment of potentially 
carcinogenic PAH is 0.29. For probabilistic risk assessments, the Oral-Soil AAF distribution 
is defined as a Beta4 distribution with the followdng characteristics: Beta4 (a=l, b==3, c=0.944964, 
d=0.0699) over die range of 0.07-1.00. 

The point estimate Dermal-Soil AAF derived for deterministic risk assessment of potentially 
carcinogenic PAH is 0.02. For probabilistic risk assessments, a distribution of Dermal-Soil AAF 
values is required. The numerator and the denominator of the AAF ratio are defined as separate 
distributions which are sampled independently during the probabilistic risk assessment. The 
numerator (dermal absorption from soil) is defined as a Beta4 distribution with the following 
characteristics: Beta4 (a=l, b=5, c=0.146908, d=0) over the range 0-0.12. The denominator 
(gastrointestinal absorption of PAHs from dose-response studies) is defined as a Beta4 
distribution with the following characteristics: Beta4 (a=4, b=l, c=0.397, d=0.602697) over the 
range 0.63-1.00. 
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TABLE 1 

SUMMARY OF ABSORPTION DATA FOR PAH DOSE-RESPONSE STUDIES 

Value 

91.2% 

89% 

98.8% 

88.7% 

99.6% 

96.7% 

98.0% 

87% 

86.9% 

94% 

75% 

97% 

93.8% 

Citation 

Hecht 

Hecht 

Hecht 

Rabache 

Rabache 

Mirvish 

Mirvish 

Witiiey 

Grimmer 

Bartosek 

Bartosek 

Bartosek 

Mirvish 

Animal 

male F344 rats 

male F344 rats 

Humans 

young male Wistar rats 

adult male Wistar rats 

male Syrian golden hamsters 

male Syrian golden hamsters 

male Wistar rats 

male Wistar rats 

female CD-COBS rats 

female CD-COBS rats 

female CD-COBS rats 

male Syrian golden hamsters 

PAH 

B(a)P 

B(a)P 

B(a)P 

B(a)P 

B(a)P 

B(a)P 

B(a)P 

pyrene 

chrysene 

B(a)A 

chrysene 

triphenylene 

3-methyl 
cholanthrene 

Vehicle 

peanut oil (single dose) 

char-broiled hamburger (single 
dose) 

char-broiled hamburger (single 
dose) 

syntiietic diet (22 days) 

synthetic diet (22 days) 

com oil + commercial 
diet Metiiod I (7-10 days) 

com oil + commercial diet 
Metiiod II (7-10 days) 

20% Emulphor/ 80% saline 
(single dose) 

33% DMSO/ 66% com oil 
(single dose) 

10% emulsifier/ 90% olive oil 
(single dose) 

10% emulsifier/ 90% olive oil 
(single dose) 

10% emulsifier/ 90% olive oil 
(single dose) 

com oil + semisynthetic diet (7-
10 days) 
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TABLE 2 

METHODS OF SUMMARIZING PAH GASTROINTESTINAL ABSORPTION DATA 

Method Used 

Each experiment within a study 
used as a single data point* 

Each result presented in each 
1 study used as a single data point 

Each result presented in each 
B(a)P study used as a smgle data 
point 

Each study represented as a 
single data point 

Each B(a)P study represented as 
1 a single data point 

# Data Points 

13 

24 

15 

7 

3 

Average Absorption 

92.0% 

92.1% 

95.0% 

90.9% 1 

94.4% 

* Method used in this AAF derivation. 
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TABLES 
PYRENE METABOLITES IN MOUSE URINE 

FOLLOWING "NEAT" MGP INGESTION 
(ROZETT ETAL., 1996) 

Amount of MGP 
residue in diet 

0.003% 

0.030% 

0.100% 

0.300% 

Control 

'Sum of 
Metabolites 
fig/mouse 

0.10 

1.39 

7.58 

12.13 

-

""Pyrene consumed 
^g/mouse 

0.79 

11.39 

31.46 

62.27 

-

Tractional 
Urinary Excretion 

12.8 

12.2 1 
24.1 

19.5 

-

'The sum of 1-OH P-GlcUA, 1-OH P-Sul, and 1-OH P levels is expressed in terms of 
equivalents of pyrene. 
•The amount of pyrene consumed by animals in metabolism cages on day 15 over a 
period of 24 hours. 
Tractional Urinary Excretion = (amount of pyrene excreted / amount of pyrene consumed 
on day 15) x 100. (The authors termed this "bioavailability." Because this is a 
nonstandard use of the term, it is renamed here.) 
Note: The pyrene level in "neat" MGP was 6.89 mg/kg. 
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TABLE 4 

PYRENE METABOLITES IN MOUSE URINE FOLLOWING SOIL INGESTION 
(ROZETT ETAL., 1996) 

Soil Fraction 

>0.850 mm 

>0.710 mm 

>0.600 mm 

>0.500 nun 

>0.300 mm 

>0.150 mm 

<0.150 mm 

Conti-ol 

'Sum of 
Metabolites 
fig/mouse 

0.37 

0.69 

0.70 

0.95 

1.72 

1.77 

9.86 

-

"SoU 
consumed 
g/mouse 

0.65 

0.64 

0.68 

0.63 

0.66 

0.58 

0.36 

-

Pyrene in 
soU jig/g 

14.3 

61.8 

63.4 

74.6 

26.8 

177.9 

185.6 

-

"Pyrene 
consumed 
fig/mouse 

9.4 

39.7 

43.1 

47.2 

17.7 

102.4 

66.7 

-

Tractional 
Urinary 
Excretion 

3.9 

1.7 

1.6 

2.0 

9.7 

1.7 

14.8 

-

'The sum of 1-OH P-GlcUA, 1-OH P-Sul, and 1-OH P levels is expressed in terms of 
equivalents of pyrene. 
"The amount of soil and pyrene consumed in metabolism cages on day 15 over a period of 
24 hr. 
Tractional Urinary Excretion = (amount of pyrene excreted / amount of pyrene consumed 
on day 15) x 100. (The authors termed this "bioavailability." Because this is a 

1 nonstandard use of the term, it is renamed here.) 
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TABLES 

PYRENE URINARY METABOLITES 

SOIL VS ORGANIC EXTRACT OF SOIL 
(WEYAND ETAL., 1996) 

Diet 

Extracted Soil #1 
Extiacted Soil #2 

Soil #1 
Soil #2 

Organic Extract #1 
Organic Extract #2 

'Pyrene Ingested 
(^g/mouse) 

0 
0 

0.60 
30.42 

0.56 
25.91 

"Pyrene Excreted 
(^g/mouse) 

0 
0 

0.039 
0.527 

0.097 
4.16 

Tractional 
Urinary Excretion 

ND 
ND 

6.2 
1.7 

17.2 
16.1 

'Ihe sum of 1-OH P-GlcUA, 1-OH P-Sul, and 1-OH P levels is expressed in terms of 
equivalents of pyrene. 
"The amount of soil and pyrene consumed in metabolism cages on day 15 over a period 
of 24 hr. 
Tractional Urinary Excretion = (amount of pyrene excreted / amount of pyrene consumed 
on day 15) x 100. (The authors termed this "bioavailability." Because this is a 
nonstandard use of the term, it is renamed here.) 

Note: Soil#l: 9 ppm total PAHs; Soil #2: 377 ppm total PAHs. | 
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TABLE 6 

BENZO(a)PYRENE BIOAVAILABILITY FROM SOILS' 
(GOON et al., 1991) 

SOIL AGING 

1 day 

1 week 

1 month 

1 6 months 

1 year 

Average- 6 mo. & 1 year 

SANDY SOIL 

66.9% 

70.4% 

67.7% 

54.3% 

62.2% 

58.3% 

CLAY-BASED SOIL 

48.8% 

52.1% 

58.5% 

38.5% 1 

38.6% 1 
38.6% 

a (Area under the blood radioactivity curve)s<,j, / (Area under blood radioactivity curve) solubon 
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TABLE? 

ANIMAL WEIGHTS DURING GOON et al. (1990) 

TREATMENT 
GROUP 

Solution 

Rodent Chow 

Sandy Soil 

Clay-Based 
Soil 

SEX 

Males 

Females 

Males 

Females 

Males 

Females 

Males 

Females 

NONFASTED 
WEIGHT (g) 

221 +/- 9 

175 +/- 3 

226 +/- 7 

173 +/- 6 

222 +/- 6 

180 +/- 4 

230 +/- 5 

172 +/- 6 

FASTED 
WEIGHT (g) 

218 +/- 12 

165 +/- 4 

222 +/- 2 

165 +/- 2 

216 +/. 6 

167 +/- 4 

221 +/- 8 

162 +/- 6 

WEIGHT AT 
DAY 7 (g) 

237 +/- 24 

179 +/- 3 

255 +/- 5 

193 +/- 4 

228 +/- 19 

190 +/- 4 

251 +/- 10 

188 +/- 4 
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TABLES 

WEIGHT GAIN DURING GOON et al. (1990) 

TREATMENT 
GROUP 

Solution 

' 
Rodent Chow 

• 

Sandy Soil 

Clay-Based Soil 

SEX 

Males 

Females 

Males 

Females 

Males 

Females 

Males 

Females 

WEIGHT GAIN 
DURING 7 DAY 
PERIOD (g) 

19 

14 

33 

28 

12 

23 

30 

26 

% WEIGHT 
GAIN DURING 7 
DAY PERIOD 

9% 

8% 

15% 

17% 

6% 

14% 

14% 

16% 
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TABLE 9 

ANIMAL WEIGHTS DURING GOON et al. (1991) 

AGING 
PERIOD 

1 DAY 

1 DAY 

IDAY 

1 WEEK 

IWEEK 

1 MONTH 

1 1 MONTH 

6 MONTHS 

6 MONTHS 

1 YEAR 

1 YEAR 

TREATMENT 
GROUP 

Solution 

Clay-Based Soil 

Sandy Soil 

Clay-Based Soil 

Sandy Soil 

Clay-Based Soil 

Sandy Soil 

Clay-Based Soil 

Sandy Soil 

Clay-Based Soil 

Sandy Soil 

NONFASTED 
WEIGHT (g) 

238 +/- 3 

245 +/- 4 

256 +/- 6 

222 +/- 3 

223 +/- 4 

243 +/- 8 

241 +/- 5 

238 +/- 3 

244 +/- 3 

242 +/- 5 

244 +/- 5 

FASTED 
WEIGHT (g) 

219 +/- 3 

235 +/- 4 

239 +/- 6 

217 +/- 3 

216 +/- 3 

220 +/- 5 

219 +/- 4 

211 +/-3 

217 +/- 4 

214 +/- 4 

214 +/- 4 

WEIGHT AT 
DAY 7 (g) 

255 +/- 4 

252+/- 11 

266+/- 11 

243 +/- 10 

241 +/- 9 

254 +/- 7 

268 +/- 4 

263 +/- 5 

263 +/- 5 

259 +/- 7 

258 +/- 7 

39 



O G D E N ENVIRONMENTAL AND ENERGY SERVICES 

TABLE 10 

ORAL-SOIL AAFS FOR PAHS 

Oral-SoU AAF 

0.07 

0.07 

0.08 

0.09 

0.11 

0.28 

0.32 

0.36 

0.37 

0.40 

0.57 

0.76 

Notes 

CD-I mice, MGP soil, 0.71-0.85 mm 

CD-I mice, MGP soil, 0.6-0.71 mm 

CD-I mice, MGP soil, 0.5-0.6 mm 

CD-I mice, MGP soil, 0.15-0.3 mm 

BfiCjF, mice, MGP soil 

CD-I mice, MGP soil, <1 mm 

CD-I mice, MGP soil, 0.85-1 mm 

BgCjF, mice, MGP soil 

rats, clay-based soil 

CD-I mice, MGP soil, 0.3-0.5 mm 

rats, sandy soil 

CD-I mice, MGP soil, <0.15 mm 

Source 

Rozett era/. (1996) 

Rozett et ai (1996) 

Rozett et ai (1996) 

Rozett et ai (1996) 

Weyand et ai (1996) 

Rozett et ai (1996) 

Rozett et ai (1996) 

Weyand e/fl/. (1996) 

Goon et a/. (1991) 

Rozett et ai (1996) 

Goon et ai (1991) 

Rozett et ai (1996) 
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TABLE 11 

DERMAL ABSORPTION OF BENZO(a)PYRENE FROM SOIL IN THE RAT 
YANG, ET AL. {19S9) 

Time Point 

24 Hours' 

48 Hours' 

72 Hours' 

96 Hours^ 

In Vivo Results 

1.1% (0.3)'-^ 

3.7% (0.8)'-2 

5.8% (1.0)'-2 

9.2% (1.2)'-^ 

In Vitro Results 

1.5%* 

3.5%' 

5.5%* 

8.4%* 

'Values shown for 48-96 hours are cumulative. Results are the mean for five rats 
(standard error). 
^ Urine plus feces 
^ Urine plus feces plus tissues. 
" See Figure 1 of Yang, et a i (1989) 
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TABLE 12 

DERMAL ABSORPTION OF BENZO(a)PYRENE FROM SOIL 
WESTER, ETAL. (1990) 

Sample 

1 

2 

3 

4 

5 

6 

Mean +/- SD 

Monkey Skin 

13.1%' 

10.8%' 

18.0%' 

11.0%' 

NA 

NA 

13.2% +/- 3.4%^ 

Human Skin 

1.01%' 

1.52%' 

0.61%' 

2.21%' 

- 0.31%' 

3.01%' 

1.45%+/- 1.02% 2 

'Percentage of applied dose absorbed = ('*C urinary excretion for seven days following 24 
hour topical application) /('*C urinary excretion following intravenous administration) x 
100 
^ Mean +/- Standard Deviation 
^ Fraction of applied dose in the skin plus fraction in receptor fluid. 
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Appendix H 

UNCERTAINTY ANALYSIS OF RISK ESTIMATES 

This appendix examines uncertainties in tfie exposure and health effects 

data that are relevant for assessing potential human health risks associated 

with exposure to contaminants originating from the industrial property. Many of 

the key quantities considered in the risk assessment are highly uncertain. For 

example, the following factors have not been estimated with high precision or 

confidence: 

(a) The spatial distribution and extent of contamination from the industrial 

property in various directions is not well known. Instead, it must be estimated 

from soil sample data. (See discussion in Appendix B). 

(b) The fraction of PAHs found at any specific location that arise from the 

industrial propertv is uncertain. The problem of distinguishing between Celotex-

related and "background" (meaning non-Celotex-related) contamination arises, 

since the same contaminants and approximate composition of PAHs found near 

the industrial property are also found at distances remote enough to make 

association with the industrial property implausible. 

(c) The magnitudes and frequencies of individual exposures depend on 

individual behaviors and on details of the yards (e.g., extent of vegetative cover 

as opposed to rock and debris cover) that have not been quantified. Hence, the 

actual magnitude of individual exposures is uncertain. Drive-by inspection of 

yards in the vicinity of the industrial property suggests that they are dissimilar in 

many respects (e.g., more rubble, less accessible soil useful for gardening or 

recreation) compared to locations further from the industrial property. How these 

local characteristics affect Individual behaviors and exposures has not been 

estimated. Similarly, local demographic characteristics (e.g., the ages, 

occupations, recreational patterns, etc.) of neighbors of the industrial property 

have not been examined. Yet, these characteristics may affect the magnitudes 

and frequencies of individual exposures to yard soils. 
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(d) The amounts of internal doses of reactive, potentially carcinogenic PAH 
metabolites fomed in humans at the exposure levels in question are not known. 
In particular, the relative amounts of intemal doses formed in humans compared 
to the amounts formed in animals under the experimental conditions used to 
establish the carcinogenicity of PAHs such as B(a)P are not known. 

(e) The cancer potency of PAHs. including B(a)P, at the concentrations found 
near the industrial property is not known. Specifically, the relation between 
carcinogenic potency of B(a)P at the high doses used in animal carcinogenicity 
experiments and its potency at the much lower levels found in the soil samples 
examined in this study is not known. In addition, the potency of the PAH 
mixtures found in the soil samples Is uncertain. 

These uncertainties create a challenge for fair, efficient, health-protective risk 
management. The actual human health risks posed by the industrial property 
are not known. They would be costly to quantify with high precision and 
confidence, since doing so would require resolving each of these sources of 
uncertainty. Yet, it is desirable to avoid the two types of risk management errors 
most likely to occur in this case: failure to adequately reduce Celotex-related 
exposures, and failure to limit reductions to those that significantly reduce actual 
human health risks. The purpose of the analyses reported in this appendix and 
the next one is to reduce the probabilities of both types of errors by introducing 
relevant information and findings from recently completed data analyses and 
literature reviews. A suggested approach to risk management decision-making 
in the presence of the uncertainties just listed is offered after some relevant 
facts, data, and statistical results have been summarized. 

Appendix B focuses on the first issue ~ uncertainty about the spatial 
extent of contamination from the industrial property. This issue can be 
addressed without considering risk assessment questions and data: it rests 
solely on statistical analysis of the soil sample data collected so far. Analysis of 
these data reveals the maximum probable geographic extent of effects from the 
property, and thus provides a basis for bounding the geographic scope of the 
risk assessment without regard for risk magnitudes. This appendix presents the 
remaining sources of uncertainty and their implications for risk management. 
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ESTIMATING THE FRACTION OF PAH EXPOSURES AND 
CARCINOGEN EXPOSURES DUE TO THE CELOTEX 

PROPERTY 

CONCEPTS FOR ASSIGNED SHARE CALCULATIONS 

Cancer risks due to environmental chemical carcinogens are typically 
small compared to cancer risks from all sources. At most, a few percent of total 
avoidable cancer risk is typically attributable to environmental insults (Doll and 
Peto, 1981). This raises the following key question: How much of the excess risk 
of cancer created by PAHs in the soil at properties examined in this study is due 
to the industrial property, as opposed to other sources of PAHs? The 
calculations of the previous appendix can help to answer this question. 

The scientific, demographic, and behavioral uncertainties previously 
catalogued make it impossible to detennine absolute risks with high precision 
and confidence. However, the attributable risk of excess cancers due to the 
industrial property may be estimated by the ratio of Celotex-related exposure to 
total exposure, with the exposures from different sources being weighted by 
their relative potencies when these can be estimated. 

The probability that an excess cancer is attributable to soil PAHs from Celotex 
operations can be estimated as the product of the following four factors, each of 
which addresses an aspect of the relative contribution to total carcinogenic 
exposure made by different sources: 

1. PAH from Celotex-contaminants in soil / PAH from all contaminants in 
soil. 

2. PAH from all soil / PAH from all sources (cooked foods, cigarettes, 
diesel exhaust emissions, coal-fired power plant emissions, etc.) 

3. Exposure to PAH from all sources / Exposure to all carcinogens from 
all environmental sources, weighted by their relative potencies. 
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(Note: other sources of environmental carcinogens identified by the EPA 
include diesel exhaust, radon, cigarette smoke, benzene, MTBE, vinyl 
chloride, and so forth. This background of exposures to carcinogens has 
not been quantified specifically for neighbors of the industrial property.) 

4. Exposure to carcinogens from all environmental sources / Exposure to 
carcinogens from all sources (including diet and lifestyle). 

In the absence of more specific information about the values of these factors, 
the relative contribution of Celotex-related contamination to the relative risk of 
cancer can be estimated by taking a plausible upper bound on each of the four 
factors and using their product as an upper-bound estimate for the conditional 
probability that Celotex contamination would be responsible for a cancer, given 
that a cancer occurs. 

Table 1 contains background information on B(a)P that may be helpful in 
estimating plausible upper bounds for the first three of these factors. For 
example, to quantify the fraction of soil PAHs that are due to the industrial 
property, one must consider other, competing sources of soil PAHs, including 

(I) Soil PAHs from smoke or soot (e.g., from wood fires, outdoor cooking or 
charcoal grilling, pollution from coal-fired power plants, etc.) 

(II) Soil PAHs from automobile emissions and other gasoline combustion (e.g., 
lawn mowers, other gasoline-powered or diesel-powered equipment). 

(iii) Soil PAHs from asphalt roads (e.g., carried in water runoff). 

Although the fractions of soil PAHs due to each of these sources have not been 
quantitatively modeled for locations near the industrial property, it would be 
unrealistic to completely ignore them. One possibility is to represent the fraction 
of soil PAHs due to emissions from the industrial property as an unknown 
quantity, uniformly distributed between 0 and some plausible upper bound. To 
be conservative (i.e., tending to maximize the risk attributed to the industrial 
property), the upper bound might be taken to be 100%. 
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TABLE 1: Excerpts from Agency for Toxic Substances and Disease Registry 
(ATSDR) Public Health Statement for B(a)P, May, 1990 

What is benzo[a]pyrene? 

Benzo[a]pyrene (B[a]P) is one of the polycyclic aromatic hydrocarbon (PAH) 
compounds. Because it is fomned when 
gasoline, garbage, or any animal or plant material bums, it is usually found in 
smoke and soot. This chemical 
combines with dust particles in the air and is carried into water and soil and 
onto crops. Benzo[a]pyrene is 
found in the coal tar pitch that industry uses to join electrical parts together. It is 
also found in creosote, 
a chemical used to preserve wood. 

How might I be exposed to benzo[a]pyrene? 

People may be exposed to B[a]P from environmental sources such as air, water, 
and soil and from cigarette smoke 
and cooked food. Workers who handle or are involved in the manufacture of 
PAH-containing materials may also 
be exposed to B[a]P. Typically, exposure for workers and the general 
population is not to B[a]P alone but to 
a mixture of similar chemicals. 

The soil near areas where coal, wood, or other products have been burned is 
another source of exposure. Exposure to B[a]P and other PAHs may also occur 
through skin contact with products that contain PAHs such as creosote-treated 
wood, asphalt roads, or coal tar. 

People may be exposed to B[a]P by drinking water from the drinking water 
supplies in the United States that have been found to contain low levels of the 
chemical. Foods grown in contaminated soil or air may contain B[a]P. Cooking 
food at high temperatures, as occurs during charcoal-grilling or charring, can 
increase the amount of B[a]P in the food. Benzo[a]pyrene has been found in 
cereals, vegetables, fruits, meats, beverages, chewing tobacco, and in cigarette 
smoke. 

The greatest exposure to B[a]P is likely to take place in the workplace. People 
who work in coal tar-production 
plants; coking plants; asphalt-production plants; coal-gasification sites; smoke 
houses; municipal trash 
incinerators; and facilities that bum wood, coal, or oil may be exposed to B[a]P 
in the workplace air. 
Benzo[a]pyrene may also be found in areas where high-temperature food fryers 
and broilers are used. 

The general population may be exposed to dust, soil, and other particles that 
contain B[a]P. The largest 
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sources of B[a]P in the air are open burning and home heating with wood and 
coal. Factories that produce coal tar also contribute small amounts of B[a]P to 
the air. People may come in contact with B[a]P from soil on or near hazardous 
waste sites, such as fomrier gas-manufacturing sites or abandoned wood-
treatment plants that used creosote. 

How does benzo[a]pyrene get into my body? 

The most common way B[a]P enters the body is through the lungs when a 
person breathes in air or smoke containing 
it. It also enters the body through the digestive system when substances 
containing it are swallowed. Although 
B[a]P does not normally enter the body through the skin, small amounts could 
enter if contact occurs with soil 
that contains high levels of B[a]P (for example, near a hazardous waste site) or 
if contact is made with heavy 
oils containing B[a]P. 

What levels of exposure have resulted in harmful health effects? 

No infonnation has been found about specific levels of B[alP that have caused 
hannful effects in people after 
breathing, swallowing, or touching the substance. 
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Similarly, the fraction of total PAH exposure that is due to soil PAHs can only be 
calculated or estimated by considering competing sources of exposure, such as 
cooked foods, cereal, vegetables, meat, and fruits, home heating with wood or 
coal, drinking water, secondary cigarette smoke, and so forth (see Table 1). 
Given all these sources of PAH exposure, the fraction due to PAHs in soil may 
be quite small, especially if the different sources are weighted to reflect relative 
bioavailabilities of the PAHs from different sources (with PAHs in food probably 
being more readily available than PAHs in soil particles, for example). A 
subjective estimate of a plausible upper bound on the fraction of PAH exposure 
due to soil might be 10%, although the true number could be much lower, 
depending on details of cigarette smoking, heating fuels, consumption of 
cooked foods, and so forth that have not yet been provided for neighbors of the 
industrial property. To model the uncertainty about this fraction, a uniform 
distribution between 0 and 0.1 might be assumed. 

The fraction of total environmental carcinogen exposure that is attributable to 
PAHs is even more difficult to estimate in the absence of specific information 
about individual behaviors and exposures. The Agency for Toxic Substances 
and Disease Registry (ATSDR) that provided the information in Table 1 also 
maintains a ranked list of the top 20 hazardous substances, on which B(a)P 
appears as the eighth one (after lead, arsenic, metallic mercury, vinyl chloride, 
benzene, PCBs, cadmium, and before chloroform, various pesticides, and other 
chemicals). The ATSDR links each of the chemicals ranked above B(a)P to 
potential human cancers, with the sole exception of metallic mercury. A 
reasonable assumption might be that the carcinogenic burden from PAHs 
accounts for no more than 5% of the total carcinogenic burden imposed by all 
hazardous substances (since there are many in the top 20 alone that may pose 
an equal or greater threat). 

Rather than making additional speculative assumptions about the probability 
distributions of the four relative risk factors, one could use deterministic upper 
bounds to calculate an upper bound on the excess cancer risk attributable to 
the industrial property. For example, if the upper bounds used are as follows: 

25 October 1996 7 © 1996, Cox Associates 



2800 S. Sacramento Site 

1. Celotex contribution to PAHs in soil < 100% 

2. Soil contribution to total environmental PAH exposure < 10% (based 
on prevalence of secondary smoke, engine exhaust emissions, air 
pollution, and other sources of environmental PAHs) 

3. Environmental PAH contribution to total environmental carcinogen 
exposure < 5% (based on prevalence of non-PAH carcinogens such as 
benzene, radon gas , pesticides, drinking water carcinogens and other 
sources of environmental carcinogens) 

4. Environmental contribution to total carcinogen exposure < 2% (based 
on Doll and Peto estimates from cancer epidemiology) 

then the conditional probability, or share in risk, for excess cancer risk 
attributable to the industrial property would not be expected to exceed the 
following: 

Example upper bound for risk attributable to the industrial property if a 
cancer occurs = (100%)(10%)(5%)(2%) = 0.0001. 

The risk due to Celotex contamination may be smaller, although it cannot be 
larger (unless the estimated upper bounds are too small). For example, if the 
effective cancer potency of soil PAHs at the concentrations found in yards 
located near the industrial property were very small or zero, then the absolute 
risk due to these contaminants would, correspondingly, be very small or zero. 
The vaiue of 0.0001 is based solely on estimated relative contributions to 
carcinogenic exposures, rather than on the abilities of such exposures to cause 
cancer. 

Instead of making a deterministic upper-bound calculation, it may be preferable 
to take a more informative probabilistic approach that better expresses 
uncertainties about the various risk factors. For example, suppose that the 
following probability assumptions are made: 
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1. Celotex contribution to PAHs in soil is uniformly distributed between 0 
and 100%. 

2. Soil contribution to total environmental PAH exposure is uniformly 
distributed between 0 and 10%. 

3. Environmental PAH contribution to total environmental carcinogen 
exposure is unifomrily distributed between 0 and 5%. 

4. Environmental contribution to total carcinogen exposure is uniformly 
distributed between 0 and 2%. 

Then Monte-Carlo uncertainty analysis shows that the expected excess risk (or 
relative exposure) attributable to the industrial property is about 6E-06, i.e., 6 
parts in a million, with a 95% upper uncertainty bound of about 30E-06. These 
numbers are again based on estimated relative contribution of Celotex-related 
soil PAHs to total carcinogenic burden. The actual risk due to the Celotex-
related PAHs may be smaller if the potencies of carcinogens are taken into 
account. Specifically, as we shall next show, the carcinogenic potency of soil 
PAHs in humans may be quite low. Thus, the calculations in this section should 
be interpreted as attempting to establish plausible bounds on the uncertainty 
about the contribution of the industrial property to cancer risk. 
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ESTIMATING THE INTERNAL DOSES OF CARCINOGENS 
FORMED FOLLOWING EXPOSURE TO SOIL PAHs 

CONCEPTS FOR INTERNAL DOSE CALCULATIONS 

The logic of the preceding calculations is that if no more than x% of a set 
of identical cancer-causing molecules acting on a person come from a 
particular source, then, in the absence of more specific information, no more 
than x% of the cancer risk experienced by the person should be attributed to 
that source. Such calculations can be very useful when there is a lot of 
uncertainty about absolute exposure magnitudes and cancer potencies, 
because the "percentage of molecules" perspective does not depend on the 
absolute number of molecules or on their ability to cause cancer. To go further 
and seek to quantify absolute risk, as defined by the expected number of excess 
tumors created by exposure to a source (such as soil PAHs originating at the 
industrial property), it is necessary to make some speculative assumptions. As 
noted by the Federal EPA (IRIS data base), "Human data specifically linking 
benzo(a)pyrene (BAP) to a carcinogenic effect are lacking." Instead, animal 
data have been used to estimate the potential carcinogenicity of B(a)P in 
humans. But this extrapolation raises several additional uncertainties. For 
example: 

1. The routes of dose administration used in animal studies (e.g., implantation in 
the stomach wall, injection, ingestion, forced inhalation, intratracheal instillation) 
are not representative of realistic exposure conditions. Cancers that occur 
under such extreme conditions of administration may not occur under more 
realistic conditions, as has been demonstrated experimentally in animals 
(Collins et al., 1991, p. 171). Moreover, neither the inhalation route nor the 
forced ingestion routes studied in animal experiments are necessarily relevant 
to the exposure pathways (especially, dermal and ingestion) experienced by 
humans. 

2. The extrapolation of effects from rodents to humans is speculative. To make it 
more credible, the ways in which humans and animals metabolize and 
eliminate PAH (and, specifically, B(a)P) doses must be compared. 
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3, The interpolation of tumorioenic response rates between hioh doses and low 
(or zero) doses is questionable. The best procedures for interpolating between 
control group tumor rates and dose group tumor rates will depend on the 
biological processes involved. 

Current regulatory risk estimates either ignore these uncertainties or introduce 
simple "default" assumptions to fill in the gaps in scientific knowledge. The 
remainder of this section reexamines the inter-species extrapolation and high-
dose to low-dose interpolation questions using data specific to B(a)P, which are 
more relevant in this case than the default assumptions. 

A key concept of modem, "biologically-based" risk assessment (BBRA) is 
that administered doses affect cancer rates and cancer risks only through 
intemal doses, e.g., through the quantity of reactive carcinogenic metabolites 
formed by metabolic activation of the administered PAH. Therefore, the 
following two questions become central in assessing the implications of animal 
experiment data for human cancer risks: 

Q1. How does the probability of tumor, in a human or in an animal, depend on 
the quantity of intemal dose received? 

Q2: How does the internal dose received depend on the dose administered (or 
on "exposure", in the case of humans)? 

The answers to these two questions determine the absolute risk associated with 
a given exposure profile or administered dose. 

DIFFERENCES IN INTERNAL DOSES ACROSS SPECIES BASED ON 
COMPARISONS OF ENZYME ACTIVITY LEVELS 

In the situation of chronic, low-level exposures most relevant for the 
Celotex case, standard phamrtacokinetic and metabolic models imply that the 
average intemal dose of carcinogenic metabolites (whose identities may or may 
not be known) reaching the (perhaps unknown) target organs and cell 
populations per unit time will be proportional to the average administered dose 
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per unit time (Cox, 1995). However, the steady-state ratio of internal dose to 
administered dose may be different in different species. A standard "default" 
assumption made in many regulatory risk assessments, including those for 
B(a)P, is that the ratio of biologically effective internal dose ~ meaning the dose 
of carcinogenic metabolites acting on cell populations to cause cancer or 
increase cancer risk ~ to administered dose depends on the body weight of the 
exposed species. (This includes allometric scaling based on surface areas, 
since surface areas are detennined from body weights.) For specific chemicals 
such as B(a)P, it is possible to replace this generic default assumption with 
more specific and relevant information. For example, available evidence on the 
biochemistry of metabolic activation and detoxification off B(a)P in different 
species may be used to refine the estimated ratio of internal dose to 
administered dose in different species. This is often done by examining the 
enzymes involved in metabolic activation and detoxification and comparing the 
activity intensities of these enzymes across species. 

It is generally accepted that many carcinogenic PAHs, including B(a)P, 
are metabolized to their carcinogenic fomris by monooxygenases (specifically, 
the P450 enzyme superfamily, which catalyzes single-electron oxidation of 
PAHs and. binding to DNA^ as well as playing a role in subsequent 
detoxification of diol intermediates) (Cavalieri and Rogan, 1992). Recent 
evidence also shows that protective enzymes (glutathione) that shield cells from 
oxidative DNA damage probably play a role in PAH carcinogenicity in both 
humans (Grinberg-Funes et al., 1994) and other species (Kirby et al., 1995). 
The highest carcinogenic risks from PAH exposures are likely to occur under 
exposure conditions that cause depletion of glutathione (GST and/or GSH) 
reserves and that lead to high levels of metabolically activated PAH oxidized 
metabolites. Conversely, if exposure levels are low enough so that glutathione 
reserves are adequate and carcinogenic metabolites of PAHs are removed or 
detoxified before they can bind to DNA or other target macromolecules and 
cause damage, then cancer risk is likely to be relatively low. 

These elementary biochemical observations suggest that the ratio of 
monooxygenase (P450) to glutathione resources in different species may 
provide a useful qualitative guide to species susceptibility to PAH-induced 
carcinogenesis. Quantitative data for making comparisons across species are 
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suggestive at best, but may be obtained if mixed function oxidases (MFO) and 

glutathione-s-transferase (GST) activity levels in different tissues are used as 

surrogates for the (unknown) specific MFO and glutathione resources most 

relevant for PAH metabolism. In particular, the ratio of MFO specific activities in 

subcellular preparations of lung tissues from Sprague-Dawley rats compared to 

preparations of lung tissues from humans is about 0.11/0.0006, while the GST 

specific activity levels are indistinguishable (Lorenz et al., 1984). Similarly, for 

mice, the MFO specific activity level is about 0.732 / 0.0006 = 1220 times higher 

in mice than in humans, while the GST specific activity level is about 727 / 78 = 

9.3 times higher. Thus,-if the MFO-to-GST ratio is a useful surrogate indicator of 

species susceptibility based on relative internal doses, then mice should be 

about two orders of maonitude more susceptible than humans. To a first 

approximation, in the absence of more specific and detailed infonnation, it might 

be expected that the rate of formation of carcinogenic PAH metabolites from 

administered PAH doses via MFO-catalyzed metabolism is also about two 

orders of magnitude greater in rats and mice than in humans. For chronic, low-

level exposures leading to steady-state intemal dose concentrations, the 

intemal dose in a rat would be expected to be at least tens, and more probably 

hundreds, of times greater than the corresponding intemal dose in a human, 

based on the relative specific activities of MFO in the two species. 

In summary, the best answer to question 02 posed above, based on the 

limited biological evidence available, appears to be the following: The relation 

between administered and internal doses, under steady-state, low-level 

exposure conditions, is that average intemal dose per unit time is probably 

proportional to average administered dose per unit time, with the constant of 

proportionality being about two orders of magnitude greater in mice and in rats 

than it is in humans. 

DISCUSSION OF SPECIES DIFFERENCES 

A default assumption commonly used in regulatory risk assessment is 

that "mg/surface area/day is an equivalent dose between species" (Collins et 

al., 1991, p. 175). This default assumption has resulted in adjusting the cancer 

potency factor for B(a)P estimated from animal data upward by a factor of 12.7 

in regulatory risk assessments (based on the relative surface areas of humans 

25 October 1996 13 © 1996, Cox Associates 



2800 S. Sacramento Site 

compared to mice) in calculating the cdrresponding estimated cancer potency 
for humans (Collins et al., 1991). Modem biologically-based approaches to risk 
assessment replace this default assumption with the alternative, more specific 
assumption that average concentration of carcinogenic metabolites in target 
organs or cell populations per unit time is an equivalent dose between species. 
Instead of adjusting carcinogenic potency estimated from mouse data upward 
by a factor of more than 10 to convert to humans, the biological considerations 
in this section suggest that it might be more appropriate to adjust the mouse 
potency estimate downward by a factor of 100 or more. This would reduce 
estimated human carcinogenic potency (based on experimental data from mice) 
by about three orders of maonitude compared to previous estimates (Collins et 
al., 1991). 
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ESTIMATING THE RISK OF CANCER ASSOCIATED WITH A 
LOW-LEVEL PAH EXPOSURE 

CONCEPTS FOR CANCER POTENCY CALCULATIONS 

As previously stated, the US EPA considers that there is no direct 
evidence in humans specifically linking B(a)P exposure to increased cancer 
risks. However, B(a)P is classified by US EPA as a "probable" human 
carcinogen, primarily because it is known to be a carcinogen in animals at 
sufficiently high doses. However, a wealth of data suggest that, at the 
concentrations of interest in the Celotex case, B(a)P has no detectable 
carcinogenic effect even in animals. Therefore, a final, key source of uncertainty 
is that it is not known whether the concentrations of B(a)P found in the soil 
samples from yards near the industrial property can cause cancer in 
experimental animals. If not, then the basis for estimating human cancer risks 
from these soil concentrations is weakened. 

To address questions of carcinogenic potency at low doses, it is usual to 
assume that at, sufficiently low doses, lifetime probability of tumor is well 
approximated by a polynomial: 

Pr(tumor if dose is x) = qo + qix + q2x2 + ... + qnX". 

For very low doses (as x approaches zero), the behavior of this function is 
detennined by q-j. If qi is positive, then it dominates the dose-response function 

at low doses: it is just the slope of the dose-response function (measured in 
units of expected tumors per unit of exposure) at the origin. In this case, q-i is 
called the potency of the carcinogen. On the other hand, if qi = 0, then the 
cancer potency quickly approaches zero at low doses. These are the two 
qualitatively different behaviors generally considered to be possible for 
carcinogen dose-response relations in the usual regulatory framework for 
cancer risk assessment. In the absence of specific evidence to the contrary, the 
EPA traditionally assumes that carcinogen dose-response functions are "low-
dose linear", meaning that q-| > 0. 
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ANALYSIS OF LOW-DOSE CANCER POTENCY FOR Bfa^P 

For B(a)P, there is strong experimental evidence from multiple species 
and experimental designs that the dose-response function is not low-dose 
linear. For example, the following table, adopted from the regulatory risk 
assessment by Collins et al. (1991), shows a clear threshold-like nonlinearity in 
tumor risk as a function of dose. Between 40 and 50 ppm, the dose-response 
relation crosses an apparent threshold (or strong upward nonlinearity) above 
which there is strong carcinogenic potency. Below 40 ppm, carcinogenic 
potency appears to be weak or non-existent. 

TABLE: MICE EXPOSED TO B(a)P BY FEEDING SHOW A NONLINEAR DOSE-
RESPONSE RELATION 

Exposure (ppm) 

0 

10 

20 

30 

40 

45 

50 

100 

Incidence of gastric tumors 

0 

0 

0.043 (=1/23) 

0 

0.025 (1 / 40) 

0.10(4/40) 

0.71 (24 / 34) 

0.83(19/23) 

Other data sets, for mice exposed to B(a)P by subcutaneous injection (Bryan 
and Shimkin, 1943) or skin painting (Wynder and Hoffman, 1959), for Syrian 
Golden hamsters exposed by inhalation (Thyssen et al., 1981), and so forth 
show a similar pattern of a relatively abrupt, well-localized transition from no 
significant tumor risk to very high tumor risk as concentration increases by less 
than one order of magnitude. 

Such data provide strong evidence of a dose-response relation that is 
nonlinear at low doses (e.g., at doses for which the response probability is less 
than 0.01.) Indeed, in order to fit low-dose linear risk models, regulators have in 
the past had to discard some of the high-dose data (Collins et al., 1991). A 
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formal statistical test of the null hypothesis of low-dose linearity would reject it 

overwhelmingly in favor of the altemative hypothesis of low-dose nonlinearity. 

The implications of low-dose nonlinearity for risk assessment can be 

dramatic. For example, the dose-response data in the preceding table suggest 

that there is no detectable excess tumor risk at ingested B(a)P concentrations 

below about 30 ppm in mice. If humans are less susceptible than mice, as 

suggested by comparing enzyme activity levels across species, then no excess 

cancer risk would be expected at concentrations of 30 ppm or less in humans. 

based on the mouse data. Only by ignoring some of the data points and 

applying default assumptions and risk models that have not been customized to 

reflect B(a)P-specific data is it possible to reach the opposite conclusion, that 

there are excess cancer risks at concentrations below 30 ppm. In particular, 

regulatory risk assessments of B(a)P have assumed low-dose linearity, rather 

than treating it as a hypothesis to be tested based on experimental data. If the 

hypothesis of low-dose nonlinearity is accepted, as the data seem to require, 

then both the expected risk and upper confidence bands on expected risk 

approach zero at low doses (e.g., 30 ppm and below). 

DISCUSSION OF REGULATORY DEFAULT ASSUMPTIONS FOR Bfa^P 

The default assumptions used in regulatory risk assessments of B(a)P 

guarantee a positive answer to the question of whether B(a)P at low doses 

creates excess risk, by assuming low-dose linearity. But low-dose linearity is 

contradicted by all of the experimental data, suggesting that the default 

assumption is not appropriate for B(a)P. Some of the other default assumptions 

should also be revised. For example, the estimated cancer potency in mice 

based on the empirically observed proportions of mice developing tumors was 

arbitrarily multiplied by a factor of 40 to reflect an assumption "that cancer 

incidence increases as the third power of age" (Collins et al., 1991). This is 

clearly inappropriate when mice at the higher dose levels already have tumor 

incidence rates in excess of 70%. Assuming that 40 times as many mice would 

have developed tumors had the experiment been continued longer is 

incoherent. Thus, it appears that a thorough review of default assumptions is in 

order for B(a)P, and that several of the assumptions must be refined or replaced 
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in order to achieve a more realistic assessment of B(a)P-induced cancer risks at 
concentrations below about 30 ppm in food. 

At the industrial property, humans are exposed to orders of magnitude 
lower doses than those in the mouse experiment. Therefore, any plausible low 
dose nonlinear dose-response function would predict no significant excess 
risks to humans based on their exposures to PAHs in soil. The best estimate of 
absolute risk due to soil PAHs is that it is indistinguishable from zero. 

DISCUSSION OF PAHs OTHER THAN B(a^P 

Most of this appendix has concentrated on B(a)P as a surtogate for other 
PAHs. It is worth considering whether the complex mixture of soil PAHs might 
present a greater cancer risk than would B(a)P alone. However, there is 
evidence (e.g., Chemg et al., 1996; Springer et al., 1989) that antagonism 
among the PAHs is more likely than synergy. Also, at the low concentrations 
involved, any such interactions are likely to be weak. Therefore, the two main 
conclusions are not changed by considering that there are multiple PAHs. It is 
still the case that (I) Previous risk assessments for B(a)P have used default 
assumptions that are not appropriate for B(a)P; and (ii) The empirical dose-
response data for B(a)P suggests that soil PAHs contribute negligibly to cancer 
risks in the vicinity of the industrial property. 
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Bivariate Distributions for Height and Weight of Men and 
Women in the United States 
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For the U.S. population, we fit bivariate distributions to estimated numbers of men and women 
aged 18-74 years in cells representing 1 in. intervals in height and 10 lb intervals in weight. For 
each sex separately, the marginal histogram of height is well fit by a nonnal distribution. For men 
and women, respectively, the marginal histogram of weight is well fit and satisfactorily fit by a 
lognormal distribution. For men, the bivariate histogram is satisfactorily fit by a normal distribution 
between the height and the natural logarithm of weight. For women, the bivariate histogram is 
satisfactorily fit by two superposed normal distributions between the height and the natural loga­
rithm of weight. The resulting distributions are suitable for use in public health risk assessments. 

KEY WORDS: Height; body weight; univariate; bivariate; distribution; simulation. 

I . INTRODUCTION 

For many years, people analyzing public health risks 
at or near hazardous waste sites have assumed that all 
adults weigh 70 kilograms (kg), although some analysts 
have assumed different weights for men and women. 
Point estimates now appear routinely as standard as­
sumptions in guidance manuals published by the U.S. 
Environmental Protection Agency (EPA) for the "Su­
perfund" and related programs (e.g., Ref. 1). More re­
cently, the EPA has published a simple table of arithmetic 
means and standard deviations for body weights of men, 
women, and men and women together in different age 
groups (Ref. 2, p. 5-5). This most recent Agency ap­
proach stops considerably short of the continuous curves 
of mean body weights (with error bars) reported in the 
"Report of the Task Group on Reference Man."<'' 

In this manuscript, we examine data on the height 
and weight of adults published by the U.S. Public Health 
Service and fit bivariate distributions to the tabulated 
values for men and women separately. Based on the 

' Alceon Corporation, P. 0. Box 2669, Harvard Square Sutton. 
Cambridge, Massachusetts 02238-2669. 
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second National Health and Nutrition Examination Sur­
vey (NHANES n), conducted from Februaiy 1976 through 
February 1980, the U.S. Public Health Service has pub­
lished extensive tables of heights and weights of the U.S. 
civilian noninstitutionaliz^d population from sbc months 
to 74 years of age.<*' In the field survey, trained exam­
ination teams tabulated the height and weight of 5916 
men and 6588 women in the age range 18-74 years. 
After statistically adjusting the raw data to reflect the 
whole U.S. population aged 18-74 years with regard to 
age structure, sex, and race, the U.S. Public Health Ser­
vice published the results shown in Table I (for an es­
timated 67,552 thousand men) and Table II (for 74,167 
thousand women). (In the original publication,^*' Tables 
27 and 28 suffer from minor discrepancies in the mar­
ginal counts, corrected here by resumming the rows and 
columns.) 

Tables I and II, respectively, report the estimated 
number of men and women in the U.S. in the age range 
of 18-74 years grouped in cells representing 1 in. inter­
vals in height and 10 lb intervals in weight. As expected, 
the (adjusted) data show (i) that men are taller and weigh 
more, on average, than women, and (ii) that taller people 
of either sex, on average, weight more than shorter peo-

0272.4332/9 :A)60(H>267S06.S(V1 O 1992 Society for Ruk AAilyiu 
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Table II. Number of Women 1^74 Years of Age, by Weight and Height. Unites States. 1976-1980 (Number of Persons in Thousands)*-' 

WeighP 
Height* <90 

(in) (lb) 

90-99 

(lb) 

100-
109 
(lb) 

110-
119 
(lb) 

120-
129 
(lb) 

130-
139 
(lb) 

140-

149 
(lb) 

150-
159 
(lb) 

160-
169 
(lb) 

170-

179 
(lb) 

180-
189 
(lb) 

190-
199 
(lb) 

200-

209 
(lb) 

210-

219 2220 

(lb) (lb) 

True 

toul 

-:55 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

a71 

True total 

31 
44 
93 
50 
86 
12 
14 
32 

362 

7 

57 
91 

1 164 

196 
267 
368 
258 
165 
30 
64 
10 

8 

13 
12 
107 
132 
262 
538 
754 
938 
843 
531 
283 
76 
32 
10 
33 

11 

41 
90 
338 
552 
621 
1286 

1660 
1729 

1168 

873 
705 
188 
85 

25 

4 
55 
55 
317 
342 
722 
1355 
1899 
1776 
1653 

1582 
804 
514 
213 
98 
6 

26 
25 
115 
147 
365 
775 
1089 

1306 
1600 
1936 
2162 
1365 
740 
488 
135 
38 

7 

12 
44 
76 
78 
297 
451 
877 
1117 
1565 
1475 
1183 
902 
605 
369 
266 
56 

7 

31 
25 
26 
120 
201 
334 
807 
728 
1006 
950 
1201 
696 
336 
336 
125 
52 

15 

13 

24 
35 
123 
261 
439 
583 
817 
741 
693 
509 
338 
193 
214 
19 

8 

68 
116 
239 
308 
448 
655 
513 
396 
255 
381 
41 
119 
46 

9 
27 
69 
128 
269 
305 
477 
404 
455 
193 
275 
99 
43 

6 
18 
14 
46 
99 
240 
227 
357 
274 
269 
213 
155 
95 
28 
25 

34 
30 
54 
123 
130 
277 
117 
156 
116 
106 
82 

3 

4 
3 

30 
110 
117 
151 
198 
109 
84 
67 
14 

16 16 55 42 30 28 15 51 

80 

36 
42 
31 
40 
164 
218 
283 
280 
516 
253 
253 
106 
93 

107 
296 
695 
1612 

2680 
4645 
8201 

9948 
11.733 
10,270 
9942 
6181 

3990 
2131 
1154 

245 

257 

1677 4572 9363 11.420- 12.328 9435 7023 5047 3621 2753 2081 1232 887 2366 74,167 

* Source: Ref. 4. Table 28. 
* Height without shoes. 
' Weight with clothes, estimated as ranging ftom 0.20^.62 lb. 
' Numbers in cells scaled up to reflect size of population; only 10;339 women actually examined. ' 

z-score. We used ordinary least squares-to fit the best 
straight lines through the appropriate variables. ^ ., 

3.2. Results for the Marginal Distributions 

For men. Figs. 1 and 2, respectively, show the mar­
ginal cumulative values and associated:z-scores;for./f/.i; 
and InWt. The straight lines for both /A and InWt, fit to 
the points by ordinary linear regression,' have R^ values 
of 0.999. From the intercepts andslopes of the, regresr 
sion lines,^'' we estimate values (i) for (i./ft,and a/,, and-, 
(ii) for M.(om and T̂̂ „,n as shown in TableHI^ The ex­
cellent visual fits and the high;/{? values for the best-fit 
line for Ht and laWt support the inference that the marr-
ginal distributions for Ht and InWt for men are, both 
Gaussian in form. 

For women. Figs. 3 and 4, respectively, show the 
marginal cumulative values and associated z-scores for 
Ht and InWt. These straight lines, also fit to the points 
by ordinaiy linear regression, have R^ values of 0.999 
and 0.985, respectively, for Ht and \nWt. From the in­
tercepts and slopes of the regression lines, we estimate 

values for the four parameters as shown in Table III. 
The close visual fit and the high R^ value for the best-
fit line for Ht for women support the inference that the 
marginal distribution is Gaussian in form. The corre­
sponding inference for InWt for women is weaker but 
adequate. 

4. CHARACTERIZATION OF BIVARIATE 
DISTRIBUTIONS 

4.1 . Methodology for the Bivariate Distributions 

As a first step in .fitting a bivariate distribution to 
Ht and InWt for each sex, we estimated the Pearson 
(linear) correlation coefficient (denoted p) and the Spear­
man (rank) correlation coefficient (denoted p,u^) be­
tween Ht and \aWt using the observed binned data for 
men and women. 
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Fig^ 3 . Women: height vs. 2-score. 

Z-Score 

Fig. 4 . Women: natural log of weight vs. z-score. 

Table III. Estimated Parameters for Univariate and Bivariate Nonnal Distributions 

Source: 

Marginals analysis 

Pearson correlation 
Spearman correlation 

Minimization of x ' statistic 
assuming one distribution 
each for men and women 

Minimization of x ' sutistic 
assuming two distributions 
for women 

Variable Estimated 

Ht 
InWt 

Ht 

ln«» 

69.12 
5.13 

69.18' 

5.14 

-

Men , 

|i. Estimsited a 

2.85 
0.17 

2.87; 

0.17 

Estimated p 

0.38 
0.37 

0.42 

Variable Estimated p. 

H I 

InWt 

H I 

IflWr 

InWr,,, 

lnJW»,5 

63.68 
4.96 

63.81 

4 .95" 

63.11 

5.06-

64.36 

4.86 

Women 

Estinuted a 

2.68 
0.20 

2.68 

0.21' 

2.76 
0.41 
0.24 

2.49 

0.14 

Estimated p 

0.22 
0.22 

0.24 

0.46 

0.44 

Fraaion 
from each 

distribution 

' 

-

0.54 

* These parameters are for the first of two distributions for. women. 
' These parameters are for the second of two distributions for women. 

eters are similar to those estimated earlier by marginal 
analjrsis and by Pearson and Spearman correlations for 
the noncensored data. From the bivariate analysis, we 
estimate the arithmetic average for height and weight as 
69.2 in. and 173.2 lb, respectively. 

For women, a similar calculation with a single bi­

variate nonnal distribution gave poor results in terms of 
the total x^ statistic and in terms of pattems in the op­
timized residuals. Table III shows the optimized para­
meters from this calculation, but we consider them less 
useful in practice. The five optimized parameters are 
also similar to those estimated eariier by marginal analy-
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Table V. Optimized Residuals for Each^Btn for Women Assuming Two Distributions' 

LnWeight 
Height 3.81 4.01 4.17 4.32 4.44 4.55 

(in) (lb) (lb) (lb) (lb) (lb) (lb) 
4.65 
(lb) 

4.74 
(lb) 

4.83 
(lb) 

4.91 
(lb) 

4.98 
(lb) 

5.04 
(lb) 

5.11 
(lb) 

5.16 
(lb) 

5.22 
(lb) 

5.27 
(lb) 

5.32 
(lb) 

5.37 
(lb) 

5.42 5.46 5.50 5.54 5.58 5.62 
(lb) (lb) (lb) (lb) (lb) (lb) 

51.5 
52.5 
53.5 
54.5 

55.5 
56.5 
57.5 
58.5 
59.5 
60.5 
61.5 
62.5 
63.5 
64.5 
65.5 
66.5 
67.5 
68.5 

69.5 
70.5 

71.5 
72.5 
73.5 
74.5 
75.5 

- 7 

- 1 1 
10 
8 

41 
-15 

16 
-51 
-35 

1 
-17 
- 8 
- 3 
- 1 

0 

- 1 

-15 
23 
21 
40 
7-

21 
97 
7 

-29 
- 9 4 

- 2 
- 1 9 
-11 
- T 

- 1 
0 

- 2 2 18 

- 6 -20 - 1 3 13 2 24 
-37 -12 8 - 1 3 16 5 
- 5 -35 - 5 8 22 4 -26 

- 9 0 73 73 - 5 3 -78 2 
-124 52-133 -21 - 3 -29 
-42 -208 -104 103 -60 -55 

11 97 86 39 95 225 
138 209 207-153 40 -48 
122 239-150-170 240 78 
- 8 - 1 0 8 - 1 9 3 93 40 -44 

-51 - 3 3 106 540-160 257 
-94 174-175 171-167 -85 
- 4 0 - 6 8 - 2 2 11-109-217 
-15 -17 - 2 9 120 -28 5 

26 - 3 3 9 - 1 8 83 -41 
- 2 - 9 -21 -14 -14 -17 

14 - 8 - 3 26 10 

9 5 
- 1 3 - 8 
-12 -24 
-50 9 
-48 - 6 
-35 20 
- 4 -27 

3 4 
146 145 
49 0 
55 -60 

-14-105 
- 3 9 129 
-41-115 

90 35 
-36 7 

1 6 

- 1 - 1 0 0 
- 5 3 - 2 - 1 
- 6 9 - 5 1 

- 1 2 - 1 0 19 - 6 
-15 - 9 - 5 - 2 2 
-28 - 8 - 1 6 - 1 5 

22 64 2 30 
-31 -21 -46 - 4 

83 58 57 - 6 
7 - 3 5 - 1 1 8 24 

106 - 6 - 5 9 - 5 5 
-75 2 -53 -49 

94 14 - 8 - 2 5 
- 9 13 16-40 

- 1 4 - 1 4 - 3 3 - 2 8 
-26 6 - 1 2 - 1 2 

- 1 5 4 - 4 - 7 

2 
-25 

39 
15 
0 

-56 
173 

-46 
30 

-36 

15 
-36 

29 

Optimized residual refers to the difference between the predicted and observed values in a bin obtained when the sum of the chi-squares is 
minimized. 

We calculated the observed marginal x^ values by. 
summing the observed and- expected biimed .data (ob- =. 
tained from minimizing the total x .̂ statistic for the cu-^ 
mutative distributions) across Ht or ]aWt and by calculating;. 
the marginal optimized residuals, the^marginal x^ values^, 
and the sum of the marginal x^ values. For example, we: 
obtained the x^ value for height ^between 65 and 66 in. 
by summing the observed and'e)q)ected binned data for., 
this height interval across all weight categories.Hie re­
sulting sum of the observed binned data minus that for 
the expected equals the optimized residual for the 65— 
66 in. height interval. We then estimated the total mar­
ginal x^ ^ f for example. 

{0,-Ed-^ 
E, 

over the height intervals. 

The final x^ statistic for each marginal distribution 
may be compared with the x^o.os value with, degrees of 
freedom equal to the. number of Ht or \nWt categories 
minus one.<"* For both men and women, the observed 
X̂  values, the degrees of freedom, the x^o.os values, and 
the;7-values for the observed x^ values for the marginal 
analyses are shown in Table VI. Because all of the ob­
served x^ values for men exceed their respective x^o.os 
values (i.e., p-values < 0.05), we reject the null hy­
pothesis and conclude that the observed and predicted 
distributions do not come from the same population. As­
suming a single distribution for women, we reject the 
null hypothesis for Ht and loWt since the observed x^ 
values also exceed their'respective x \ o s values (i .e. ,p-
values < 0.05). Assuming two distributions for women, 
the observed x^ value for Ht exceeds its x^cos value, 
while the observed x^ value for In^r is less than its x^cos 
value (i.e., ;?-value > 0.05). Consequently, we reject 
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ifies the simulation for men, the simulation for women 
requires the use of a Bernoulli trial to select between 
two distributions, one for each subpopulation. 

7. SUMMARY AND DISCUSSION 

Bivariate data for the height and weight of men and 
women between the ages of 18 and 74 years are well fit 
by normal distributions between the height and the log­
arithm of weight. For men, a.single bivariate normal 
distribution fits the data well, and for women, a pair of 
superposed bivariate normal distributions fits the data 
well. The final distributions of height and weight for 
men and women are suitable and practical for use in 
public health risk assessments using Monte Carlo sim­
ulation to estimate full distributions for exposure and 
risk. 
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Abstract 

In both deterministic and probabilistic human health risk assessments, body weight 

plays a crucial role in estimating exposure doses and the subsequent health risks. 

Based on results published from the NHANES II Survey (National Health and Nutrition 

Examination Survey, 1989), we use exploratory data analysis, probability plots, and 

regressions to fit normal and lognormal distributions to percentiles of body weight for 

female and male children as a function of age from 6 months to 20 years. Lognormal 

distributions give consistently strong fits to the NHANES II data across all age groups 

for each gender, a result consistent with previously published results for adult women 

and men. We also demonstrate the practical use of these results in risk assessments. 

Introduction 

In 1983, the National Academy of Science published a method often used to estimate 

the health risks associated with exposure to hazardous chemicals in the environment 

(NAS, 1983). In a deterministic risk assessment, an analyst combines point values 

representing the intensity, frequency, and duration of exposure with point values for 

toxicity to estimate a health risk. Each of these point values may be an average, 

conservative, upper-bound, or worst-case value. We have found that risk assessors 

often estimate health risks for exposure scenarios that will rarely if ever occur because 
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the combination of point values often falls far above the 95th percentile of the full range 

(Burmaster & Harris, 1993). 

Using probabilistic techniques, a risk assessor can estimate full distributions of 

exposure and risk. In a probabilistic risk assessment, the analyst specifies a probability 

density function - PDF (or a cumulative distribution function - CDF) for each input 

variable to estimate full distributions for exposure and risk. 

To conduct a probabilistic risk assessment that includes children in the exposed 

population, a risk assessor needs parametric or nonparametric distributions for the body 

weights of children as a function of age. The US EPA has published averages for 

children's body weights grouped in three-year intervals; birth to 3 years, 3 years to 6 

years, 6 years to 9 years and so on to 18 years (US EPA, 1989, EFH, Table 5-3), but 

the Agency's manual does not give full distributions for the body weights as a function of 

age. As children's body weights change with age. many analysts working on 

deterministic risk assessments return to the US EPA's source, the NHANES II Survey 

completed by the National Center for Health Statistics (NCHS, 1987), to use the data in 

single year increments. By extension, we return to the same source to fit probability 

distributions for use in probabilistic risk assessments. 

NHANES II Survey Design 

The NHANES II Survey collected information on the nutritional status and related factors 

to determine the prevalence of ovenweight people in the United States (US) non-

institutionalized population. Conducted by the National Center for Health Statistics 

(NCHS) from February 1976 through February 1980, the target population was civilians 

in 50 states from 6 months through 74 years of age. 

The entire NHANES II sample included 27,801 persons, 91 percent of whom were 

interviewed. Of these, 20,322 were interviewed and examined, for a response rate of 
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73.1 percent (NCHS, 1987). The body weights of 4,079 females and of 4,379 males less 

than 20 years of age were collected and reported after the data were statistically 

adjusted for non-response and probability of selection and then post-stratified by age, 

sex, and race to reflect the whole US population (Exhibit 1; NCHS, 1987). 

As described in Appendix 1 of the NHANES II Survey, the survey used a stratified, 

multistage design that selected samples at each stage with a known probability of 

sampling females and males. In hierarchical order, the stages of selection were: primary 

sampling units (PSUs), which are counties or small groups of contiguous counties; 

census enumeration districts; segments (clusters of households); households; and 

finally sample persons. The list consisted of all housing units located in the 1970 

Census of the Population (NCHS, 1987). Younger and older age groups were over-

sampled and approximately one person per sample household was selected. 

The NCHS derived national estimates through a multistage estimation procedure with 

three main steps: (i) inflation by the reciprocal of the probability of selection, 

(ii) adjustment for non-response, and (iii) post-stratification by age, sex, and race. 

(NCHS, 1987, Appendix I - Statistical Notes). The probability of selection is the product 

of the probabilities of selection from each stage of selection in the design - PSU, 

segment, household, and sample person to reduce inflation by the reciprocal of the 

probability of selection (NCHS, 1987, Appendix I - Statistical Notes). To adjust for non-

responses, the estimates were inflated by a multiplication factor that increases the 

estimates based on examined persons to the value that would have been achieved if all 

sample persons had been examined (NCHS, 1987, Appendix I - Statistical Notes). To 

post-stratify by age, sex, and race, estimates of the number of examined persons were 

adjusted by ratio within each of the 75 age-sex-race cells to independent estimates, 

provided by the US Bureau of the Census, of the population for 1 March 1978, the 

approximate midpoint of the survey. The ratio adjustment used a multiplication factor in 
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which the numerator was the US population and the denominator was the sum of the 

weights adjusted for non-response for examined persons bringing the population 

estimates into close agreement with the US Bureau of the Census estimates of the 

civilian non-institutionalized population (NCHS, 1987, Appendix I - Statistical Notes). 

Exploratory Data Analysis 

The NCHS reported the NHANES II results as percentiles of body weight (pounds) for 

each age group and each gender. (Each age group begins on the birthday of the child 

and continues for 364 days). In Exhibits 1A and 1B, the percentiles of body weight 

(converted to kilograms, kg) are almost the same for females and males from 6 months 

to approximately 10 years of age. As expected, the differences between females and 

males widen at puberty. For each age group and each gender. Exhibits 1A and IB show 

the number of children examined, the mean body weight for the single year increment, 

and body weights for 9 percentiles: 5th; 10th; 15th; 25th; 50th; 75th; 85th; 90th; and the 

95th. 

Exhibit 2 graphs female's and male's body weights as a function of age (values are 

plotted at the mid point of the age group). We note that the 95th percentiles of body 

weight for the older groups of children are further from the median than the 5th 

percentiles, thereby indicating positively skewed distributions (Chambers et. al., 1983; 

Cleveland, 1985; and Tukey, 1977). We also note that all age groups (except the first) 

have a mean value larger than the median, another indication of positively skewed 

distributions. The panels in Exhibit 2 also reveal the relatively large sampling errors and 

statistical fluctuations in the lower and higher percentiles for ages greater than 10 years. 

We used Microsoft Excel™ to graph the empirical CDFs for female's and male's body 

weight on both linear and logarithmic scales. (Throughout this analysis, we use natural 

logarithms). As an example for one age group, Exhibit 3 shows the percentile body 
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weights for females and males from 12 to 13 years of age. (As we demonstrate later, 

females and males at this age have the greatest variance in their weights, i.e., these 

age groups are the least homogeneous for each gender.) In general, if percentile values 

come from a normal distribution, then the empirical CDF on a linear scale will have a 

symmetric sigmoid shape. Similarly, if percentile values come from a lognormal 

distribution, then the empirical CDF on a logarithmic scale will have a symmetric 

sigmoid shape. It is usually impossible, however, to determine how well a set of data or 

percentiles fits a distribution by looking at an empirical CDF. The linear interpolations of 

the CDFs on a linear scale in the top panel of Exhibit 3 do not appear to be significantly 

more or less symmetric than those on a logarithmic scale in the bottom panel. By 

graphical inspection alone, we could not determine whether the normal or lognormal 

distributions fit the NHANES II percentiles better. 

The Probability Models 

To model the percentiles of body weight, we investigated several symmetric and 

asymmetric distributions and then focused on the normal distribution and the lognormal 

distribution. For the normal model, we used this form: 

BWt ~ N { ^ , (J,) Eq 1 

where the parameters / i , and cr, correspond, respectively, to the mean and the 

standard deviation of the distribution. For the lognormal model, we used this form: 

In BWt ~ N(/i2, CTj) Eq2 

where//j and o^ have the corresponding meaning for the natural logarithm of the 

distribution. Many texts present material on these distributions (e.g., Evans, 1993). 
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Probability Plots and Regression Analyses 

For each age group and gender, we plotted the percentile body weights on both normal 

and lognormal probability plots to compare quantitatively how well the normal and 

lognormal models fit the data. By design, a normal probability plot has the property that 

when percentiles or data from a normal distribution are graphed, the points will fall along 

a straight line (with the intercept equal to | i , and the slope equal to d,) (D'Agostino & 

Stephens, 1986). 

Normal Model: BWt = / î -i- cr, • z Eq 3 

Similarly, a lognormal probability plot has the corresponding property that when 

percentiles or data from a lognormal distribution are graphed, the points will fall along a 

straight line (with the intercept equal to li^ and the slope equal to o-J. 

Lognormal Model: In BWt = / i ^ -t- cr̂  • z Eq 4 

In each case, the abscissa plots the z-score, equivalent to the variate of a standardized 

(unit) normal distribution (Gilbert, 1987; Abramowitz & Stegun, 1964). 

We created normal and lognormal probability plots for each age group and each gender. 

Exhibits 4 and 5 are examples presenting normal and lognormal probability plots for 

female's and male's body weights 12 to 13 years of age. The points on each graph 

represent the percentiles reported by the NHANES II Survey, and each straight line 

represents a least-squares linear regression (Eqs 3 and 4). 

From visual inspection of the 80 plots (20 normal and 20 lognormal probability plots for 

each gender), we observed that the linear regressions on the lognormal probability plots 

fit the percentile points much better than those on the normal probability plots. To 

compare the two models quantitatively, we examined several goodness-of-fit measures 
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for the regressions (D'Agostino & Stephens, 1986). In Exhibits 6 and 7, the t statistics 

around the / i^ and the CT^ values indicate that the lognormal distributions consistently fit 

the points better than do the normal distributions. Also, the adjusted R2 values ( aR2) 

and the F ratios for the regressions show that the lognormal distributions consistently fit 

the percentiles better than do the normal distributions. From these graphical and 

quantitative comparisons, we conclude that the lognormal distributions consistently give 

strong fits to the percentile of body weights for each gender across all age groups, a 

finding in turn consistent with results previously published for adult women and men in 

the United States (Brainard & Burmaster, 1992). 

Lognormal Distributions as a Function of Age ^ K > L ^ S r C C \ 7 ^ " ^ v 

)it 8 graphs the p^ and the a^ values estimated from the lognormal probability plots 

for femaltais and male's body weights as a function of age. The top panel shows that the 

p.2 values f o r f ^a l es and males increase relatively smoothly and equally until diverging 

near age 15 yearsN^he d^ values for each gender, however, show much larger relative 

fluctuations across the a^groups, another manifestation of the relatively large 

sampling errors and statisticaHkjctuations in the NHANES II results. Note the vertical 

scales in the two panels are differe 

For interpolation and simulations in MathemQtica™ (Wolfram, 1991), we fit n'h-order 

polynomials to the jl^ and a^ values for each gender as a function of age using this 

functional form: 

y(t) = Co+ Ci •t-t-C2 •t2H....-j-Cn't n for 0.5 < t ^ ^ Eq 5 

where y is the fitted variable, t is the age in years, and the n are consecutive integers. 

We write this polynomial more compactly as the tuple of coefficients, nameiyv(co, c i , C2, 

..., Cn}. For/ij and d^, we fit polynomials in Eq 7 with 2 < n < 7. 

\ 
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Balancing the competing objectives of fidelity of fit, parsimony of expression, and 

comriWiality of functional form for females and males, we found that quadratic 

polynomials gave excellent fits to the/ij values and that quartic polynomials gave 

adequate fits t \ the dj values as a function of age. For females, we found: 

/}, = {2.05065, 0>V94101, -0.00447392}, and 

CTj = {0.164669, -0.036W9, 0.00943697, -0.00070061, 0.0000158666} 

with aR2 = 0.995 and 0.791, respectively. For males, we found: 

/ i j = {2.17253, 0.164478, -0.00278956}, and 

a,= {0.165078, -0.0435777, 0.010562, -o\^0752062, 0.000016586} 

with aR2 = 0.996 and 0.755, respectively. 

For each gender. Exhibit 9 presents the fit of the quadratic^ynomials superimposed 

on the point estimates {p^) and error bars (± a^) for body weiglrKas a function of age. 

In this section, we fit polynomial functions of age to the p.̂  and the d^v^lues for each 

gender. These polynomials fit and smooth the time dependencies for the /J^and the dj 

values previously fit for each age group. In the appendix, a colleague presents'̂  

alternate approach, based on the method of maximum likelihood, that fits the logndhj[^al 

parameters and the time dependencies in one unified optimization for each gender. 

Practical Application of these Results 

In this section, we discuss three applications of these results in probabilistic risk 

assessments which include children in the exposed population. 

First, a risk assessor may include two random generators, one for each gender, for each 

age group in the study. This direct method has a high computational cost. 
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Second, a risk assessor may build a custom, parametric generator for a particular 

problem. To illustrate this approach, we consider a hypothetical situation for which the 

population consists of an equal number of females and males from 6 months to 7 years 

of age. Using lognormal distributions with the fl^ and a^ values taken from Exhibits 6 

and 7, we had Crystal Ball™ simulate 1,000 individuals in each age group for each 

gender. In Exhibit 10, we pooled these values, plotted them on a lognormal probability 

plot using Mathematica™, and estimated p^ = 2.69 and a^ - 0.326 for this hypothetical 

population from the least-squares linear regression (aR2 = 0.991). Exhibit 11 shows the 

resulting PDF and CDF for this mixed group of children. This method provides an 

excellent fit for the central 95 percent of the distribution in this example, (e.g., I z I < 2), 

but it fails when the population includes a wider age range because the pooled values 

no longer follow a parametric distribution. 

Third, a risk assessor may build two custom generators, one for each gender, based on 

the polynomial models in this main report or on the alternative models in the appendix. 

The generators so constructed take the age range of interest as an input. If well 

designed, these modules can be re-used in many different assessments in the sense of 

object-oriented programming. In a future report, we will illustrate this most general 

approach. 

Discussion 

Starting for the most recent and best available data for the 50 states, we have found 

that lognormal distributions give consistently strong fits to the body weights of children, 

ages 6 months to 20 years. This paper and its appendix present two alternative and 

equally practical ways to model and then simulate the age dependencies of these 

lognormal distributions for each gender. 
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Exhibit 1A 

Female's Body Weights; 6 Months to 20 Years of Age 

Age 
(years) 

6 months to 1 
1 to 2 
2 to 3 
3 to 4 
4 to 5 
5 to 6 
6 to 7 
7 to 8 
8 to 9 

9 to 10 
10 to 11 
11 to 12 
12 to 13 
13 to 14 
14 to 15 
15 to 16 
16 to 17 
17 to 18 
18 to 19 
19 to 20 

Number • 
Examined • 

(n) -

177 
336 
336 
366 
396 
364 
135 
157 
123 
149 
136 
140 
147 
162 
178 
145 
170 
134 
170 
158 

4.079 

Mean 

(kg) 

8.8 
10.8 

. 13.0 
> 14.9 
. 17.0 
> 19.6 
. 22.2 
• 24.7 
• 27.9 
» 32.0 
. 36.1 
. 41.9 
• 46.5 
. 51.0 
. 54.8 
. 55.2 
. 58.1 
. 59.7 
• 59.0 
. 60.2 

5th 
Percentile 

(kg) 

6.6 
8.9 
10.8 
11.7 
13.8 
15.3 
17.1 
19.2 
21.5 
23.0 
25.8 
29.9 
32.4 
35.5 
40.3 
44.1 
44.2 
44.5 
45.3 
48.6 

10th 
Percentile 

(kg) 

7.3 
9.1 
11.3 
12.3 
14.3 
16.2 
17.8 
19.5 
22.4 
25.0 
27.5 
30.4 
35.1 
39.1 
42.9 
45.2 
47.4 
48.9 
49.6 
49.8 

15th 
Percentile 

(kg) 

7.5 
9.4 
11.6 
12.9 
14.6 
16.7 
18.6 
19.9 
23.3 
25.9 
29.1 
31.4 
36.8 
39.5 
43.7 
46.6 
48.9 
50.5 
50.8 
51.8 

25th 
Percentile 

(kg) 

7.9 
9.9 
12.0 
13.4 
15.2 
17.3 
19.3 
21.5 
24.4 
27.0 
31.0 
34.0 
39.2 
44.2 
47.5 
48.3 
51.3 
52.3 
52.9 
54.0 

50th 
Percentile 

(kg) 

8.9 
10.7 
12.7 
14.8 
16.7 
19.0 
21.3 
23.8 
27.6 
29.7 
34.5 
40.4 
45.4 
49.1 
53.2 
53.4 
55.7 
58.5 
56.5 
57.2 

75th 
Percentile 

(kg) 

9.4 
11.7 
13.8 
16.1 
18.4 
21.2 
23.8 
27.1 
30.2 
33.6 
39.5 
45.9 
52.7 
55.3 
60.4 
59.7 
62.6 
63.5 
63.1 
64.5 

85th 
Percentile 

(kg) 

10.1 
12.4 
14.5 
17.0 
19.3 
22.8 
26.6 
28.7 
31.4 
39.4 
44.3 
51.1 
58.2 
61.0 
65.8 
62.3 
69.0 
68.3 
66.1 
70.7 

90th 
Percentile 

(kg) 

10.4 
12.7 
14.9 
17.5 
20.2 
24.7 
29.0 
30.3 
33.3 
43.4 
45.9 
56.7 
60.4 
66.6 
67.7 
65.6 
73.4 
71.7 
70.2 
75.0 

95th 
Percentile 

(kg) 

10.9 
13.4 
15.9 
18.4 
21.2 
26.6 
29.6 
34.1 
36.5 
48.5 
49.7 
60.1 
64.4 
76.4 
75.3 
76.7 
76.9 
81.9 
78.1 
78.2 

Source: National Center for Health Statistics: Anthropometric Reference Data and Prevalence of Overweight, US 1976-60 
Converted from Pounds to Kilograms 
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Exhibit I B 

Male's Body Weights; 6 Months to 20 Years of Age 

Age 
(years) 

6 months to 1 
1 to 2 
2 to 3 
3 to 4 
4 to 5 
5 to 6 
6 to 7 
7 to 8 
8 to 9 

9 to 10 
10 to 11 
11 lo 12 
12 to 13 
13 to 14 
14 10 15 
15 to 16 
16 to 17 
17 to 18 
18 to 19 
19 to 20 

Number • 
Examined • 

(n) . 

179 
370 
375 
418 
404 
397 
133 
148 
147 
145 
157 
155 
145 
173 
186 
184 
178 
173 
164 
148 

4.379 

Mean 

(kg) 

9.4 
11.8 
13.6 

- 15.7 
' 17.8 
• 19.8 
• 23.0 
• 25.1 
' 28.3 
• 31.2 
• 36.5 
• 40.3 
' 44.3 
• 49.9 
• 57.2 
• 61.1 
• 67.2 
• 66.7 
• 71.1 
• 71.8 

5th 
Percentile 

m 
7.5 
9.7 
11.1 
12.9 
14.1 
16.0 
18.6 
19.7 
20.5 
24.1 
27.2 
26.8 
30.8 
35.4 
41.0 
46.3 
51.5 
50.8 
54.2 
56.0 

10th 
Percentile 

(kg) 

7.6 
10.0 
11.6 
13.5 
15.0 
16.8 
19.2 
20.8 
22.7 
25.7 
28.3 
28.8 
32.6 
37.0 
44.5 
49.2 
54.4 
53.5 
56.7 
58.0 

15th 
Percentile 

(kg) 

6.2 
10.4 
11.8 
14.0 
15.3 
17.2 
19.9 
21.2 
23.6 
26.0 
29.6 
31.8 
35.5 
38.4 
46.5 
50.7 
56.1 
54.8 
60.4 
60.7 

25th 
Percentile 

(kg) 

8.6 
10.8 
12.6 
14.4 
16.0 
17.7 
20.3 
22.2 
24.7 
27.1 
31.5 
33.5 
37.8 
40.1 
49.8 
54.3 
58.7 
58.9 
61.6 
64.0 

50th 
Percentile 

(kg) 

9.4 
11.7 
13.5 
15.5 
17.6 
19.4 
22.1 
24.9 
27.6 
30.2 
34.9 
37.4 
42.6 
48.5 
56.4 
60.2 
64.5 
65.9 
70.5 
69.6 

75th 
Percentile 

(kg) 

10.1 
12.6 
14.5 
16.8 
19.1 
21.3 
24.1 
26.9 
30.0 
33.1 
39.3 
46.5 
48.9 
56.3 
63.4 
65.1 
73.8 
72.2 
76.7 
78.0 

85th 
Percentile 

(kg) 

10.7 
13.2 
15.2 
17.4 
20.0 

22.9 
26.5 
28.3 
33.1 
35.4 
43.6 
52.1 
52.6 
59.9 
66.2 
68.9 
78.2 
76.9 
80.1 
84.4 

90th 
Percentile 

(kg) 

10.9 
13.6 
15.8 
18.0 
20.9 
23.7 
28.4 
29.6 
35.6 
38.7 
46.3 
57.1 
59.0 
64.3 
69.0 
72.9 
82.3 
82.4 
83.6 
86.9 

95th 
Percentile 

(kg) 

11.5 
14.4 
16.6 
19.1 
22.2 
25.4 
30.1 
34.0 
39.2 
43.2 
53.5 
61.1 
67.7 
70.1 
77.2 
81.4 
91.3 
89.0 
95.4 
92.3 

Source: National Center for Health Statistics: Anthropometric Reference Data and Prevalence of Overweight, US 1976-80 
Conversion from Pounds to Kilograms 
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Exhibit 2 

Female's Body Weights; 6 Months to 20 Years of Age 
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Exhibit 3 

Cumulative Distribution Function; Females and Males 12 to 13 Years of Age 
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Exhibit 4 

Normal Probability Plot Female's Body Weights; 

12 to 13 Years of Age 

Weight (kg) 

-X y > ^ 

^ 
F ^ 

-1 

70 

60 

50 

/ 
^ 40 

^ 
1 

^ 
y T 

1 

. ^ 

^ 

z score 

2 

Lognormal Probability Plot Female's Body Weights; 

12 to 13 Years of Age 

Ln Weight (In kg) 

z score 
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Exhibit 5 

Normal Probability Plot Male's Body Weights; 

12to13 Years of Age 

Weight (kg) 

z score 

Lognormal Probability Plot Male's Body Weights; 

12 to 13 Years of Age 

Ln Weight (In kg) 

-2 -1 

4.2 

3.8 
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Exhibit 6 
Statistics for Probability Plot Regression Analyses; 
Female's Body Weights 6 Months to 20 Years of Age 

Normal Probability Plots ^ l tstat o l tstat F ratio aR2 

Age: 6 months to 1 8.78 219.6 1.26 35.9 1287.3 0.994 
1 t o 2 10.91 195.1 1.39 28.4 806.6 0.990 
2 to 3 13.06 158.3 1.47 20.3 412.2 0.981 
3 to 4 14.90 355.2 2.02 55.1 3031.6 0.997 
4 to 5 17.08 155.5 2.28 23.7 561.1 0.986 
5 to 6 19.98 71.1 3.27 13.3 177.0 0.957 
6 to 7 22.57 66.1 3.93 13.2 173.3 0.956 
7 to 8 24.90 65.6 4.36 13.1 172.5 0.955 
8 to 9 27.84 104.2 4.33 18.5 343.4 0.977 

9 to 10 32.83 36.5 7.14 9.1 82.4 0.911 
10 to 11 36.37 86.9 7.18 19.6 384.0 0.980 
11 to 12 42.21 54.8 9.51 14.1 199.3 0.961 
12to13 47.18 115.1 9.90 27.6 761.5 0.990 
13 to 14 51.86 47.4 11.25 11.7 138.0 0.945 
14 to 15 55.20 89.9 10.29 19.2 366.9 0.979 
15 to 16 55.77 52.6 8.82 9.5 90.5 0.918 
16 to 17 58.82 85.1 9.83 16.3 264.3 0.971 
17 to 18 60.01 65.2 9.93 12.3 151.8 0.950 
18 to 19 59.18 74.4 8.77 12.6 159.0 0.952 
19 to 20 61.09 77.2 9.16 13.2 175.1 0.956 

Lognormal Probability Plots 

Age: 6 months to 1 
1 to 2 
2 to 3 
3 to 4 
4 to 5 
5 to 6 
6 to 7 
7 to 8 
8 to 9 

9 to 10 
10 to 11 
11 to 12 
12to 13 
13 to 14 
14to 15 
15to 16 
16to 17 
17to 18 
18to 19 
19 to 20 

M2 

2.16 
2.38 
2.56 
2.69 
2.83 
2.98 
3.10 
3.19 
3.31 
3.46 
3.57 
3.71 
3.82 
3.92 
3.99 
4.00 
4.06 
4.08 
4.07 
4.10 

tstat 

343.5 
794.5 
618.6 

1554.1 
744.1 
327.8 
294.2 
319.5 
585.7 
187.2 
636.0 
318.0 

1102.6 
322.0 
732.4 
303.7 
539.5 
399.4 
427.0 
427.0 

a2 

0.145 
0.128 
0.112 
0.137 
0.133 
0.163 
0.174 
0.174 
0.156 
0.214 
0.199 
0.226 
0.213 
0.216 
0.187 
0.156 
0.167 
0.165 
0.147 
0.149 

tstat 

26.4 
48.7 
30.9 
90.3 
40.1 
20.4 
18.8 
19.9 
31.5 
13.2 
40.4 
22.1 
70.1 
20.3 
39.3 
13.5 
25.4 
18.5 
17.7 
17.7 

F ratio 

695.3 
2372.3 
955.4 

8147.3 
1609.2 
418.2 
355.3 
395.6 
992.8 
175.2 

1636.1 
489.6 

4911.1 
413.6 

1541.9 
182.4 
644.2 
340.7 
313.1 
314.2 

aR2 

0.989 
0.997 
0.992 
0.999 
0.995 
0.981 
0.978 
0.980 
0.992 
0.956 
0.995 
0.984 
0.998 
0.981 
0.995 
0.958 
0.988 
0.977 
0.975 
0.975 
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Exhibit 7 
Statistics for Probability Plot Regression Analyses; 
Male's Body Weights, 6 Months to 20 Years of Age 

Normal Probabi l i ty P lots n l tstat o l tstat F ratio a r2 

Age: 6 months to 1 9.39 236.2 1.23 35.2 1242.4 0.994 
1 t o 2 11.82 231.6 1.40 31.3 982.7 0.992 
2 to 3 13.63 228.6 1.64 31.4 983.1 0.992 
3 to 4 15.73 215.7 1.80 28.1 791.4 0.990 
4 to 5 17.80 184.2 2.37 28.0 784.6 0.990 
5 to 6 20.04 111.9 2.78 17.7 313.6 0.975 
6 to 7 23.24 69.1 3.41 11.6 134.3 0.943 
7 to 8 25.29 66.4 3.86 11.6 134.0 0.943 
8 to 9 28.56 66.6 5.17 13.8 189.3 0.959 

9 t o 1 0 31.50 55.1 5.26 10.5 110.8 0.932 
10 to 11 37.13 47.9 7.32 10.8 116.5 0.935 
11 to 12 41.68 52.1 10.42 14.9 221.7 0.965 
1 2 t o 1 3 45.28 43.9 10.19 11.3 127.3 0.940 
1310 14 50.00 74.9 10.66 18.3 333.2 0.976 
14 to 15 57.11 112.5 10.25 23.1 533.2 0.985 
15 to 16 61.00 83.9 9.72 15.3 233.2 0.967 
16 to 17 67.87 78.0 11.43 15.0 225.1 0.966 
17to18 67.16 97.9 11.21 18.7 348.5 0.977 
18 to 19 71.02 75.5 11.30 13.7 188.6 0.959 
19 to 20 72.21 133.5 11.12 23.5 552.0 0.986 

Lognorma l Probabi l i ty Plots 

Age: 6 nrwnths to 1 
1 to 2 
2 to 3 
3 to 4 
4 to 5 
5 to 6 
6 to 7 
7 to 8 
8 to 9 

9 to 10 
10 to 11 
11 to 12 
12to13 
13 to 14 
14to 15 
15to 16 
16 to 17 
17to 18 
18to 19 
19 to 20 

, M2 

2.23 
2.46 
2.60 
2.75 
2.87 
2.99 
3.13 
3.21 
3.33 
3.43 
3.59 
3.69 
3.78 
3.88 
4.02 
4.09 
4.20 
4.19 
4.25 
4.26 

tstat 

445.2 
1133.4 

949.0 
998.7 

1019.2 
524.9 
293.3 
319.1 
343.0 
280.0 
281.8 
341.3 
295.6 
481.6 
764.8 
553.7 
557.2 
757.3 
479.0 

1046.9 

02 

0.132 
0.119 
0.120 
0.114 
0.133 
0.138 
0.145 
0.151 
0.181 
0.165 
0.195 
0.252 
0.224 
0.215 
0.181 
0.159 
0.168 
0.167 
0.159 
0.154 

tstat 

30.1 
62.5 
50.2 
47.5 
54.2 
27.7 
15.5 
17.2 
21.3 
15.4 
17.5 
26.7 
20.1 
30.4 
39.4 
24 6 
"25.4 
34.5 
20.5 
43.3 

F ratio 

906.0 
3902.3 
2516.2 
2255.0 
2938.8 

769.6 
241.3 
294.6 
452.8 
236.7 
306.8 
712.0 
402.3 
925.2 

1552.4 
606.0 
646.8 

1192.2 
419.7 

1877.6 

ar2 

0.991 
0.998 
0.997 
0.996 
0.997 
0.990 
0.968 
0.973 
0.983 
0.967 
0.975 
0.989 
0.980 
0.991 
0.995 
0.987 
0.988 
0.993 
0.981 
0.996 
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Exhibit 8 

Values of )i2 Estimated from Lognormal Probability Plots 
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Exhibit 9 

Polynomial Fit of Hj ± <J2 ^o"" 
Female Body Weight; 6 Months to 20 Years of Age 

Age (yrl 
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Exhibit 10 

Lognormal Probability Plot for a Mixed Population 
6 Months to 7 Years of Age; 

1,000 Iterations Per Gender and Age Group 
Every 10th Point Plotted 
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Exhibit 11 

Probability Density Function for a Mixed Population; 
6 Months to 7 Years of Age 
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Appendix A: A direct approach for interpolation between ages 

The main paper provides parameters for linear fits to the transformed empirical cumulative 

distributions for weight at each age, using inverse normal or inverse lognormal 

transformation; and it also provides smoothed interpolation-between-age formulae by fitting 

polynomials to these parameters. For all practical purposes in risk assessment these 

procedures give excellent results. From a statistical point of view, they may be viewed as 

sub-optimal because (a) the methods used fail to take account of the correlations between 

different empirical percentiles, (b) they fail to account for the heteroscedasticity of the 

empirical percentiles, and (c) the two-stage procedure fails to take account of the 

heteroscedasticity between ages'. We sketch here an extension to the approach that 

overcomes these objections, can be used to obtain parsimonious and compact expressions to 

adequately represent all the data shown in Exhibit 1, and may be implemented within a 

spreadsheet program. As a bonus, we design the interpolation formulae so that they can be 

extrapolated a few years beyond the age-range given in Exhibit 1 without going seriously 

astray. 

We start with a somewhat more generalized theoretical development than is strictly necessary. 

Label age groups by /, / = 1, 2,...., Â , with n, people measured in age group /, with the central 

' The estimates of percentage points are unbiased, so that the parameter estimates for 

the distributions are also unbiased. However, they may not be efficient estimates. 
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age of the age group being r,; and let the j "" percentile in age group / be at probability p,j, 

with 

0 = P . 0 < / ' . I < - < P . M . < P . M . M = 1 Eq. A.l 

so that the A/, given percentiles at age / are ;?,, through p ^ , , and these are augmented for 

convenience with 0 and 1 at each end. Let the value at they* percentile in age group / be at 

weight w ĵ, with 

0 = w . < w , < ... < w „ < w „ , =oo 
lO l l iM iM • ! 

Eq. A.2 

where again the top and bottom values are appended for convenience of notation. For this 

example, we transform weights to a logarithmic scale, so the w are natural logarithms of 

weights, and w,o is taken to be -oo. We further assume that the distribution of In(weight) at 

any age is normal, with mean p(r) and standard deviation o{t). 

If all sampling had been at random from the population, the loglikelihood for the given 

observations would be: 

•^=E " . E (/̂ .yM -/',;) 1" 
1=1 y = 0 

o 0 { t ) 

( 

-<D 
o(r,) Eq. A.3 

where O is the standard cumulative normal integral (the denominator Ay+/~Piy i" the logarithm 

has been introduced simply to subtract a constant so that J vanishes for a perfect fit). In fact, 

the sample was designed as a stratified random sample, and observations were weighted 

according to the sample design. However, we do not know the sampling weights, nor how 
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the distributions may differ in the various strata. In the absence of such information, we shall 

use Eq. A.3 as a suitable approximation to the loglikelihood — and expect that this will give 

more efficient estimates than the procedure used in the main paper. 

All that is now required is a parameterization of the mean p(r) and standard deviation c(t), 

followed by maximization of the likelihood with respect to the parameters to obtain the best 

fit. The parameterization chosen was: 

M(0=ln 
iA+Bt)e'^"'°^''^'^D 

l + e -('-',)/r. 
Eq. A.4 

/ ^ 

t - t . Eq. A.5 
a ( r ) =a+bit- t^)exp 

\ \ '• J ) 

The first is a good fit to the general shape of body-weight curves shown in Exhibit 2, and has 

the advantage of approaching a constant at large ages. The second adequately fits the 

empirical values of a (see Exhibit A.2 and Exhibit A.3) while also approaching a constant at 

ages greater than 20. 

Maximum likelihood estimates^ may now be obtained for the parameters. Exhibit A. 1 shows 

these estimates (and the maximum likelihood value of J) with sufficient precision to be 

^ These estimates were obtained using the optimizer in Borland* Quattro* Pro 5.0 to 

maximize the loglikelihood given in Eq. A.3. The cumulative nonnal integral O was 

implemented using a custom add-in function. 
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negligibly different from the optimum. These give a very good fit to all the data all at once, 

as illustrated by comparing the observed mean value with the predicted value, calculated from 

the predicted median and standard deviation as exp(p+a^/2). Exhibit A.4 shows the predicted 

arithmetic mean and standard deviation for these fits, compared with the data points (the 

standard deviation for the data is computed from the maximum likelihood fits for lognormal 

distributions at each age independently). 

The same approach can also be taken using the polynomial parameterization used in the main 

paper. Exhibit A.5 shows the mean and standard deviation as calculated using the same order 

polynomials as given in the main paper, with coefficients selected to maximize the 

loglikelihood function (Eq. A.3) — these values differ somewhat from those given in the 

main paper. It can be seen that the parameterization selected in this appendix does 

considerably better (the maximum likelihood values for the polynomial fits are -298.62 for 

females, and -3(X).33 for males). 

Furthermore, the parameterization of this appendix can be extrapolated a few years beyond 

the range of the data. At ages greater than 20, both median weight and standard deviation of 

the weight tend to constant values, and the medians, as estimated from this data, correspond 

fairly closely to standard estimates of adult body-weight. 
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Exhibit A. 1 Maximum Likelihood Parameters 

Parameter 

A 

B 

C 

To 

lo 

a 

b 

h 

T2 

h 

J 

Females 

7.430 

2.073 

58.63 

1.621 

12.70 

0.1582 

0.01205 

6.000 

6.582 

7.593 

-213.79 

Males 

8.270 

2.021 

11.11 

1.950 

14.43 

0.1619 

0.01322 

7.031 

6.530 

7.650 

-219.44 

Units 

kg 

kg/yr 

kg 

yr 

yr 

yr-' 

yr 

yr 

yr 

A-5 



0.26 

Age in years 

Exhibit A.2 Optimum fit to a for females using the parameterization of Eq. A.5 
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0.26 

Age in years 

Exhibit A.3 Optimum fit to o for males using the parameterization of Eq. A.5 
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Exhibit A.4 Arithmetic mean and standard deviation using Eq. A.4 and Eq. A.5 

A-8 



140-

120-

100-

&o 80-

op 
'C 
^ 60 

40-

20-

(The male curves have been displaced vertically 
by 35 kg) 

.« • 

Males 

- r 
6 10 

— I — 
12 14 

- I — 
16 18 20 

Age (years) 

Exhibit A.5 Arithmetic mean and standard deviation using polynomial fits 
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ABSTRACT 

Ordinary algebra may be used to backcalculate health-based cleanup targets in 
deterministic risk assessments, but it does not work in interval or probabilistic risk 
assessments. Equations with interval or random variables do not follow the rules of 
ordinary algebra. TTiis paper explains the need for more sophisticated methods to 
backcalculate soil cleanup targets when using interval or random variables. 

INTRODUCTION 

When estimating incremental lifetime cancer risk, R, associated with 
environmental exposure to a single carcinogenic chemical via a single exposure 
pathway, risk assessors often use equations of this fundamental form: 

rr' y 

rf Y 

where fl indicates a product over the index. In this discussion, we assume that Xi is 
the exposure point concentration (EPC), Xj is the cancer slope factor (CSF), and all 
the remaining variables on the right hand side (RHS) of the equation are other 
exposure variables. Adapting ideas published by the National Academy of Sciences 
in 1983 (NAS, 1983), the US EPA has published many such equations for use in 
public health risk assessments at hazardous waste sites (e.g., US EPA, 1989). In all 
but rare instances, the US EPA has developed its formulae following the general 
form of Eqn 1 to hold for positive real numbers, i.e., deterministic or point values 
that do not express either variability or uncertainty in a quantity. 
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In the deterministic framework, Eqn 3 is always correct, and an analyst can use 
It to compute the point value for AccX, consistent with the point value for AccR 

T H E INTERVAL P A R A D I G M 

Before discussing the probabilistic paradigm, we first consider the mterval 
paradigm. In this paradigm, each variable no longer takes just a point value but 
instead takes a range of values within an interval to represent variability and/or 
uncertainty in a quantity (Alefeld and Hcrzberger, 1983). An interval variable 
provides no information on the relative likelihood of any value between the 
minimum and the maximum. For example, an interval variable V that can take any 
value from 2 to 3, including the endpoints, may be written 2 < V < 3. We consider 
only positive interval variables, i.e., ones for which both endpoints are positive. We 
also adopt two new notations for interval variables. First, we underscore each 
interval variable, e.g., V, to distinguish one from an ordinary variable. Second, we 
use a compact notation to show the range, e.g., V = [min, max]. 

Forward Calculations 

In the interval paradigm, Eqn 1 remains the fiindamental equanon of risk 
assessment. However, in this framework, the analyst interprets each of the variables 
on the RHS of Eqn 1 as an interval variable that takes a range of positive values. 

To emphasize the change in perspective, we re-write Eqn 1 as Eqn 4 with singly 
underscored symbols to denote that each variable is now an interval variable: 

R = —I Eqn 4 

~ rf Y 

In Eqn 4, £ is an interval variable because each of the JC, and Yj is an interval 
variable. 

Backward Calculations 

When working in the interval framework, the risk assessor must solve Eqn 5 for 
the acceptable exposure point concentration (AccXi) that is consistent with the 
prevailing policy for acceptable risk (AccR). 

AccX. • nl J X. 
AccR = ; Eqn 5 
— n̂  Y 

11,.1 -Lj 
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Thus Eqn 6' (and Exjn 6) are false for interval variables. The endpoints of the 
incorrect interval for AccXi calculated by erroneous Eqn 6' each differ by a factor of 4 
from the correct values in this example. Further, the substitution of the incorrect answer, 
[1/2, 16] as computed by erroneous Exjn 6', direcdy into Ex̂ n 5' shows that it does not 
meet the prevailing policy for acceptable risk. Even more unexpected, V/V ?t [1, 1] in 
general in the interval paradigm. These results surprise many risk assessors. 

This result, well known in mathematics, shows that real number algebra cannot 
be used to invert Eqn 5 to Exjn 6 for positive interval variables. Under suitable 
conditions, there are more sophisticated methods which an analyst can use to solve 
Eqn 5 for positive interval variable AccXi given positive interval variables for the 
other variables on its LHS and RHS (Alefeld and Herzberger, 1983; Person and 
Long, 1994; Burmaster and Thompson, 1994). Regardless of the method used to 
calculate a proposed solution for AccXi in Eqn 5, a proposed solution — say, a 
proposed range for a soil cleanup target — is considered mathematically correct if 
and only if the proposed solution satisfies Eqn 5 when substituted into it. 

THE PROBABILISTIC PARADIGM 

In the rest of this manuscript, we discuss a fiilly probabilistic paradigm. While a 
number of authors and the US EPA itself have begun to support a probabilistic 
interpretation for some of the variables in Eqn 1, we know of no thorough 
discussion of the consequences of adopting a fiiUy probabilistic interpretation of 
Eqn 1 when moving from risk assessment to backcalculating cleanup targets as a 
part of risk management. 

Why is it appropriate to replace the deterministic framework with a probabilistic 
one? We give two of the many answers (for others, see: Morgan and Henrion, 1990). 
First, in theory, dictionaries base the definition of risk on the concept of chance or 
probability. For example, the Webster's New World Dictionary defines "risk" as "the 
chance (meaning, probability) of injury, damage, or loss...." (Webster's, 1970). The 
probabilistic fi-amework returns risk assessment to its most basic definition. Second, 
as a practical matter, risk assessors agree that all the variables on the RHS of Eqn 1 
contain both (i) variability (here, defined as knowledge of heterogeneity in a well-
characterized population, usually not reducible through flirther measurement or 
study) and/or (ii) uncertainty (here, defined as ignorance about a poorly-
characterized phenomenon or model, sometimes reducible through further 
measurement or study). For example, not every adult drinks the same amount of 
water each day (a manifestation of variability). Further, an analyst may not know 
how much water each adult drinks each day (a manifestation of uncertainty). Most 
mathematicians use random variables to represent and analyze both variability and 
uncertainty (Morgan and Henrion, 1990; Cooke, 1991), and techniques are 
available for propagating them independendy (if appropriate) using simulation 
(Frey, 1992; Hoffman and Hammonds, 1993; Carrington, 1993). 

Hum. Ecol. Risk Assess. Vol. 1, No. 1, 199S 9 3 
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Backward Calculations 

When interpreting a probabilistic risk assessment, a risk manager also needs a 
new framework to decide if an acceptable risk or unacceptable risk occurs at a site. 
She or he can no longer use a simple "bright line test", i.e., a single number, against 
which to judge the estimated distribution of risk, E. In the probabilistic paradigm, 
risk is a random variable represented by a probability distribution, so a risk manager 
must make a decision about the acceptability or unacceptability of risk by making 
decisions about the acceptability or unacceptability of the distribution of risk, not 
about a single point value of risk. In this manuscript, we investigate AccR* as a 
single specified distribution. 

When working in the probabilistic framework, the risk assessor must solve Eqn 
7 for the acceptable value of the exposure point concentration (AccX i) that is 
consistent with the distribution for acceptable risk (AccR*) specified by the risk 
manager. 

AccX.-rf,X. 
AccR* = — = , '^^^^ Eqn 8 

Risk assessors experienced in using Eqns 1, 2, and 3 in the deterministic 
paradigm often think that they can use ordinary algebra to re-arrange Eqn 8 into 
Eqn 9: 

AccX, ^ ^ g E = * ' n i . i L Eqn 9 

nUx. 
Unfortunately, in the probabilistic paradigm, Eqn 9 does not follow from Eqn 8 

because AccR* is not independent, a mistake that we ourselves have made (Lloyd et 
al., 1992). 

To show that Exjn 9 does not follow from Eqn 8, let us exploit a property of 
lognormal distributions. We use the notation: 

V ~ exp[ N (nv, Ov) ] 

to represent a random variable, YJ whose natural logarithm is distributed as a normal 
or Gaussian random variable with mean pv and standard deviation CTv (Gilbert, 1987). 
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Case B: Eqn 8' has a degenerate solution for AccX , in the form of a real constant 

Continuing the numerical example above, let us consider that the risk manager 

specifies the distribution for acceptable risk as AccR' ~ exp[N(-l, 5)]. In this case, we 

find AccXi ~ exp[N(0, 0)], a real value, a result confirmed by direct- substitution in 

Eqn 8'. In Case B. AccX. degenerates to a constant = e" = 1 However, Eqn 9' suggests 

that AccXi - exp[N(0, ^50^)], a false result that fails direct substitution in Eqn 8'. 

Case C: Eqn 8' has no feasible solution for AccX i. 

Continuing the numerical example above, let us consider that the risk manager 

specifies the distribution for acceptable risk as AccR* - exp[N(-l, 4)]. In Case C, 

we find that AccXi has no feasible solution in Eqn 8'. However, Eqn 9' suggests 

that AccXi ~ exp[N(0, J A T ) ] , a false result that fails direct substitution in Eqn 8'. 

As the variance of AccR* decreases, the solution to Eqn 8' degenerates from a 
distribution in Case A, to a real value in Case B, and then to no solution in Case C. 
In all three cases, Eqn 9' gives incorrect and misleading results. This conclusion, well 
known in mathematics, shows that ordinary algebra cannot be used to invert Eqn 8 
to Eqn 9 for random variables. Under suitable conditions, there are more 
sophisticated methods, including a technique called multiplicative deconvolution, 
which an analyst can use to solve Eqn 8 for random variable AccX, given random 
variables for the other variables on its LHS and RHS (Person and Long, 1994). 
Regardless of the method used to calculate a proposed solution for AccX, in Eqn 8, 
a proposed solution — say, a proposed distribution for a soil cleanup target — is 
considered mathematically correct if and only if the proposed solution satisfies Eqn 
8 when substituted into it. 

D I S C U S S I O N 

First, ordinary algebra can be used to re-arrange Eqn 1, the fiindamental risk 
equation for exposure to a single carcinogen in the fully deterministic paradigm, to 
estimate point values for soil cleanup targets. However, in the interval and the fiilly 
probabilistic paradigms, ordinary (real number) algebra cannot be used to re-arrange 
the fiindamental risk equations (Eqns 4 and 7). Under suitable conditions, there are 
more sophisticated methods which an analyst can use to solve Eqns 5 or 8 for 
interval variable AccX , or random variable AccX, given appropriate information 
for the other variables on the LHS and the RHS of the particular equation (Person 
and Long, 1994). 

Second, a risk assessor and a risk manager must pick a paradigm for a project and 
then follow the internal logic of that framework throughout both the assessment 
and the management phases of the project. Each of the three paradigms is internally 
consistent. Risk assessors or risk managers who begin in one framework and then 
switch to a different one will inevitably make erroneous calculations and draw 
erroneous conclusions. 
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Sixth, we empliasize that not all risk management activities require directly 
asking the question "How clean is clean enough.^". For example, some risk 
management decisions are structured as choices amonga small number of mutu.illy 
independent alternatives, each of which has an associated technology, cost, and 
efficacy. We suggest that the techniques of probabilistic risk analysis,<and decision 
analysis are very useful in this type of risk management decision, although they are 
not addressed in this manuscript. 

Finally, one of the most pressing issues raised by this manuscript is the need for 
risk managers to think about how to make judgments on the acceptability or the 
unacceptability of distributions of risk. As a society, we need ways to pick 
distributions of acceptable risk — as fiill distributions — or to identify acceptable 
distributions of risk .— say, as constraints on probability distributions. 
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ABSTRACT 

When evaluating a fiilly probabilistic risk assessment, say at a hazardous waste 
site, the risk manager needs a risk management policy that distinguishes an 
acceptable distribution of risk from an unacceptable one. This manuscript explores 
several alternative ways to define the acceptability of a distribution of risL This 
manuscript also presents methods to backcalculate distributions for cleanup targets 
under the alternative risk management policies if the need arises. 

INTRODUCTION 

When estimating the incremental lifetime cancer risk, R, firom an environmental 
exposure to a single carcinogenic chemical via a single exposure pathway, risk 
assessors (hereafter, RAs) often use equations of this fiindamental form: 

n ' Y 
R = _ L i i ± ^ Eqn l 

n Y 

where FI indicates a product over the index. In this discussion, we assume that Xi is 
the exposure point concentration (EPC), Xi is the Cancer Slope Factor (CSF), and 
all the remaining variables on the right hand side (RHS) of the equation are other 
exposure variables. Adapting ideas published by the .National Academy of Sciences 
in 1983 (NAS, 1983), the US EPA has published many such equations for use in 
public health risk assessments at hazardous waste sites (e.g., US EPA, 1989). In all 
but rare instances, the US EPA has developed its formulae in the deterministic 
paradigm in which all variables on the RHS of Eqn 1 are positive real numbers, i.e., 
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RISK AS A RANDOM VARIABLE 

In the probabihstic paradigm, R in Eqn 2 is a positive random variable 
represented by a probability distribution because each of the X, and Yj is a positive 
random variable represented by a probability distnbution. With knowledge of the 
distributions of all the X, and Yj. an analyst can calculate a closed form expression 
for the distribution E in a handfiil of special cases with independent variables 
(Springer, 1979). In most practical cases, including those cases with correlated or 
jointly distributed random variables, the analyst can simulate a numerical 
approximation to the distribution E (Rubenstein, 1981; Morgan, 1984). In 
simulations, the analyst may use (simple) Monte Carlo sampUng or (weighted) 
Latin Hypercube sampling in a simulation program that may run on a typical 
personal computer or engineering workstation. Many such computer programs are 
available today, including RiskQ_ (Bogen, 1993; Wolfram, 1991), Crystal Ball 
(Decisioneering, 1994), and (®Risk (Palisades, 1993). 

T H E ACCEPTABILITY O F A DISTRIBUTION OF RISK 

When interpreting a probabilistic risk assessment, a risk manager (hereafter, RM) 
also needs a probabilistic firamework in which to decide whether an acceptable risk or 
unacceptable risk occurs at a site. She or he can no longer use a simple "bright line 
test," i.e., a single point value (Rosenthal et al., 1992), against which to judge the 
estimated distribution of risk without picking a moment or a percentile of the 
distribution. In the probabilistic paradigm, the incremental lifetime cancer risk is a 
positive random variable represented by a probability distribution. Hence, a RM must 
make a decision about the acceptability or unacceptability of the risk by making 
decisions about the acceptability or unacceptability of the distribution of the risk. 

In this manuscript, we investigate several possible tests that a risk manager could 
use to judge the acceptability or unacceptability of the distribution of the risk. We 
will discuss several approaches (of the innumerable universe of approaches) that a 
RM could use to judge the acceptability or unacceptability of distribution E 
estimated using Eqn 2. For example, a risk manager could use one of these 
approaches when interpreting a risk assessment at a hazardous waste site to 
determine if the current conditions (either before or after some remediation) are 
acceptable or not. If, for current conditions, the distribution E estimated using Eqn 
2 is judged acceptable according to the governing policy, then the RM may conclude 
that the site needs no (flirther) remediation or management. On the other hand, if, 
for the same conditions, the estimated distribution E is judged unacceptable, then 
the RM may conclude that the site needs (fiirther) remediation or management. Of 
course, the RM may also consider other issues (e.g., cost, engineering feasibility, and 
public acceptance) in the decision. 

In this manuscript, we denote the set of all distributions of risk that meet the 
governing policy for the acceptability of a distribution of risk wth the symbol AccR. 
In the first approach discussed next, the set AccR includes only one distribution 
which is acceptable under the governing risk management policy, but in each of the 
remaining approaches, the set AccR includes an infinite number of distributions 
which are acceptable. 
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9NP ANP 

Figure 1. Cumulative distiibution fimctions for three nonparametric distributions. 

Figure 2. Lognormal probability plots for three lognormal distributions. 
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Specifying the Set of Acceptable Distributions using One Inequality Constraint on 
One Percentile of E 

In a fifth and simplest policy approach, the RM could define a distribution of 
risk E calculated with Eqn 2 as acceptable as long as one key percentile of the 
distribution meets one inequality constraint, e.g.. Cons 5. Some government 
agencies have already begun to express their exposure and/or risk management 
policies for hazardous waste sites along these lines. For example, in Massachusetts, 
before or after cleanup, a hazardous waste site poses an acceptable risk if the 95* 
percentile of estimated incremental lifetime cancer risk falls at or below 1 in 100,000 
(MA DEP, 1993). In this fifth and simplest policy approach, there are fewer choices 
for the regulatory agency: (i) the percentile at which the constraint applies, and (ii) 
the value of the constraint (yO-

T H E ACCEPTABILITY O F A DISTRIBUTION FOR THE EXPOSURE 
POINT CONCENTRATION 

Next, we present ways to backcalculate distributions for the cleanup target under 
the altemative policy options discussed above. 

With the key concept of an acceptable distribution of risk defined as one of the 
five alternative risk management policies discussed above, one can understand the 
concept of an acceptable distribution of exposure point concentration as any 
probability distribution Xi (or in the degenerate limit of zero variance, any point 
value Xi) which — when substituted into Eqn 2 along with the distributions for the 
other input variables — yields a distribution E that meets all criteria for the 
acceptability of risk specified by the regulatory agency. 

If the governing policy for the acceptability of a distribution E admits an infinite 
number of distributions into the set AccR , then, in general, that governing policy 
in turn will admit an infinite number of distributions of exposure point 
concentration Xi into the set of all such acceptable distributions (the set AccX Q. 

When conducting a baseline risk assessment (say, before remediation at a 
hazardous waste site), the RM can decide whether the distribution of exposure point 
concentration Xi at a site is acceptable or not by considering the distribution E 
using Ex}n 2. If the distribution E is acceptable (or not) according the prevailing 
regulatory policy, then the distribution Xv is acceptable (or not). If the distribution 
E is not acceptable to the RM according to the governing policy, then some 
intervention is necessary (i) to make the distribution Xi "smaller" or narrower, or 
(ii) to reduce the intensity, frequency, or duration of exposure at the site. 

In the fully probabilistic paradigm, the question "How clean is clean enough?" 
occurs as it does in the fully deterministic paradigm. However, it is usually more 
difficult to calculate a fiiU distribution for a cleanup target in the fiilly probabilistic 
paradigm than it is to calculate a point value for a cleanup target for the exposure 
point concentration in the deterministic paradigm. 

Even though there may be many ways to backcalculate one or more members of 
the set AccXi, and even though it may be more difficult to compute one or more 
members of the set AccXi, it is straightforward to test a distribution (or a point 
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General Solution When AccR* is Specified 

In the first policy approach, if the RM specifies one distribution AccR* as the 
uniquely acceptable distribution of risk, then Eqn 2 has zero or one solution for an 
acceptable distribution of EPC (Person and Long, 1994). If the variance of the 
specified AccR* is too small (compared to the variances of the other variables), then 
Exjn 2 has no solution. If the variance of the specified AccR* is large enough, and if 
other mathematical conditions hold, then Eqn 2 has one solution which may be 
calculated using multiplicative deconvolution (Person and Long, 1994). The single 
solution may be a single distribution for the exposure point concentration, or, in the 
limit of decreasing variance, a single real number. 

As noted earlier, this approach with one specified AccR* has little or no practical 
appeal, say, as a way to plan remediation at a hazardous vtraste site. In addition to the 
limitation mentioned earlier, this approach has the fiirther limitation that the 
algorithms for multiplicative deconvolution necessary to compute it are numerically 
intensive and are sensitive to numerical instabilities (Person and Long, 1994). 

General Solution When Either AccR# or AccR+ is Specified 

In the second policy approach, if the RM specifies the policy for the acceptability 

of risk in terms of a fliUy or partially dominant distribution (AccR* or AccR*. 

respectively), Eqn 2 has an infinite number of nondegenerate solutions. In this 

second policy approach, the RA may use a combination of multiplicative 

deconvolution, dispersive Monte Carlo simulation, and dependency bounds analysis 

(Person and Long, 1994; Person, 1994) — along with the methods in Appenduc 1 

— to find a first solution to the stated problem- Once a first solution is found, the 

analyst can use numerical experiments and heuristic search to find other solutions 

closer to the extremal solution. In this second policy approach, the extremal solution 

is the (unique) feasible solution for Xi that yields the E closest to AccR* or AccR* 

in a defined metric. If either AccR* or AccR* is specified, any distribution that is 

dominated by a known solution to Eqn 2 is also a solution. 

General Solution When Inequality Constraints Are Specified For Moments 

In the third policy approach, if the R M specifies the policy for the acceptability 
of risk in terms of one or more constraints on one or more moments in the form of 
Cons 1, 2, 3, and/or 4, Eqn 2 always has an infinite number of nondegenerate 
solutions (unless the constraints somehow contradict each other and admit no 
feasible solution). In this third policy approach, the RA may use a combination of 
multiplicative deconvolution, dispersive Monte Carlo simulation, and dependency 
bounds analysis (Person and Long, 1994; Person, 1994) — along with the methods 
in Appenduc 1 — to find a first solution to the stated problem. Again, once a first 
solution is found, the analyst can use numerical experiments and heuristic search to 
find solutions closer to the extremal solution. In this third policy approach, an 
extremal solution is any (non unique) nondegenerate distribution that just touches 
the specified constraints. With the acceptability of risk defined in terms of 
constraints in the form of Cons 1, 2, 3, and/or 4, any distribution that is dominated 
by a known solution to Eqn 2 is also a solution. 
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n V ^ , . 2 X 1 

s • R = s • X, • —7—^— Eqn 4 
= = ' rii Y ^ 

When inserted into Eqn 2, the scaled distribution s • Xi leads to the scaled 
distribution s • E which, by construction, just touches the constraint(s) that caused 
the Minimum [ ŝ  ]. If E is a lognormal distribution, then s • E is also a lognormal 
distribution. Similarly, if Xi is a lognormal distribution, then s • Xi is also a 
lognormal distribution. Finally, any distribution dominated by the distribution s • Xi 
is also a solution to the problem. 

General Solution When One Inequality Constraint Is Specified for One Percentile 

In the fifth and simplest policy approach, if the RM specifies the policy for the 
acceptability of risk in terms of one constraint on one specified percentile of the risk 
distribution in the form of Cons 5, Eqn 2 always has an infinite number of 
nondegenerate solutions. Again, with the acceptability of risk defined in terms of 
constraints on one percentile of risk in the form of Cons 5, any distribution that is 
dominated by a known solution to Exjn 2 is also a solution. 

In this policy approach with only one inequality constraint, the scaling method 
does find one of the infinite number of nondegenerate distributions which are 
extremal solutions. In this fifth policy approach, an extremal solution is any (non 
unique) distribution that just meets the single specified constraint at the edge of the 
feasible envelope. Again, with the acceptability of risk defined in terms of one 
constraint on one percentile of risk in the form of Cons 5, any distribution that is 
dominated by a known solution to Eqn 2 is also a solution. 

In this fifth policy approach, ChemRisk (1994), Sielken (1994), and McKone 
(1994) have also found a point value for Xi that is an extremal solution. As an 
example of this degenerate case, say the single constraint occurs at the 95* percentile 
of E as in Cons 5 earlier: 0 < Eo.9S ^ Yi-

If the single inequality occurs at the n* percentile (n > 50), the analyst computes 
a point value for X, by taking the (100 - n)* percentile on the RHS of Eqn 5. In this 
example wth the constraint at the 95* percentile of risk, the analyst computes Xi as: 

X, 
" Yi-n{..Yj ] 

nLx. I Eqn 5 
loos 

This method also has modest computational burden, and it produces an extremal 
point value as the cleanup target. In other words, when the point value Xj is 
substituted into Eqn 2, the 95* percentile (in this example) of the distribution E 
equals Yi. The algebraic proof of this derivation in the special case when all the 
distributions are lognormal ones shows that the distribution E that results from this 
procedure has moments and percentiles which come from the distributions for the 
X, (i = 2, ..., I) and the Yj (j = 1' ••• J)> ^°^ ^o"^ regulatory policy. In parallel v«th 
earlier results, any point value (or ftUl distribution) which is stochastically dominated 
by a known solution is also a solution. 
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acceptable distribution of risk in terms of inequality constraints on specified 
percentiles — has only a modest computational burden. Although the scaling 
algorithm is not an extremal algorithm when two or more inequality constraints are 
specified as in the fourth policy approach, we find it practical for use in estimating 
distributions for cleanup targets at many hazardous waste sites, especially ones 
without prominent "hotspots". 

Fifth, although we are not ourselves RMs, we believe that the fourth policy 
approach — with two or three constraints — is the most attractive of these because it 
gives the RM great flexibility in specifying a risk management policy in terms of the 
median risk and the "high end" risk [EndNote 6]. The fourth policy approach also 
gives the RA certain mathematical methods with modest computational complexity, 
and the fourth policy approach gives the potentially responsible parties (PRPs) good 
latitude to fashion a cost-effective remedy consistent with the stated risk management 
policy. Overall, we believe that the fourth policy approach (not the fifth one) is the 
most practical and reasonable to pursue in the real world. [EndNote 7] 

Sixth, a proposed solution for a nondegenerate distribution (or a proposed point 
value) of the exposure point concentration — no matter how calculated — must be 
verified or falsified by direct substitution into E^in 2. Thus, the RM need not 
understand the method by which someone proposed a full distribution (or point 
value) for a cleanup target. However, the RM should verify that the proposed 
distribution Xi (or the proposed point value Xj) is indeed a solution by using the 
direct test given above. 

Seventh, in the fiilly probabilistic paradigm in which the policy for the 
acceptability of a distribution of risk is expressed in terms of inequality constraints 
on moments and/or percentiles, we understand that an engineer working on the 
remediation at a hazardous waste site must translate the distribution selected by the 
RM as the cleanup target into explicit instructions for the field crew. [EndNote 4] 
In this manuscript, we do not consider "where to drive the bulldozer" or any 
compliance issues. We note that there is no 1:1 relationship between a probability 
distribution for the exposure point concentration and the spatial distribution of 
exposure. [EndNote 5] 

Eighth, as a practical matter, RAs and RMs may find themselves working in a 
hybrid paradigm in which some variables are treated as real numbers (constants) and 
other variables as random variables. Such a situation may arise for technical or policy 
reasons. As an example of the former, the RA may decide that it is unnecessary or 
inappropriate to treat one or several variables as random variables after completing 
sensitivity analyses of the exposure model. As an example of the latter, the US EPA 
currently rejects the idea that Cancer Slope Factors are properly modeled as random 
variables, even though toxicologists inside and outside the Agency recognize that 
CSFs have both variability and uncertainty inherent in them. In such situations, the 
RA would use (i) a point value — perhaps an arithmetic mean or a value at a higher 
percentile — for each of these variables held constant and (ii) a random variable for 
each of the others. In this hybrid paradigm, an equation similar to Eqn 2 would hold 
as the fiindamental risk equation. Although we do not elucidate the rules for the 
internal consistency of such hybrid paradigms here, the RA and the RM must do so 
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5. Many different i^a/ia/distributions (e.g., for contaminants in soils) may give 
rise to identical (or indistinguishable) probability distributions for tlic 
exposure point concentration in a particular risk assessment. 

6. By constraining both the median risk and the "high end" risk, the risk 
management policy indirectly constrains the expected value of risk as well. If 
the risk management policy only constrains one percentile of risk, even a 
"high end" percentile of risk, the policy does not limit the expected value of 
risk, even indirectly. 

7. As Albert Einstein wrote, "Make things as simple as possible, but no more so." 
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APPENDIX 1 

Feasible Regions in the \ i - a Plane 

In the fiiUy probabilistic paradigm, the distribution for E fro"^ Eqn 2 tends to a 
lognormal distribution as the number of input variables increases (regardless of the 
distributions of the input variables). In this appenduc, we investigate how a risk 
management policy defined in terms of inequality constraints on various percentiles 
or monients of a lognormal distribution in turn places constraints on the two 
parameters of that lognormal distribution describing risk. 

In this appenduc, we use this notation for a lognormal distribution of risk; 
E - exp[ N( PR, OR) ] where exp denotes the exponential function and N(*, •) 
denotes a normal or Gaussian distribution with mean pR and standard deviation 
GR. For flirther information on this distribution, see Evans et al. (1993). 

In the p - O plane, we will investigate the constraints on p and a that arise 
from mathematical principles and from different types of inequality constraints 
that risk managers may use to define acceptable risk. Each type of inequality 
constraint divides the p - o plane into a feasible region and an infeasible region. 
The boundary between the two regions is the line of equality for the constraint. If 
multiple inequality constraints hold simultaneously (i.e., multiple inequality 
constraints are combined with the Boolean operator AND), the feasible region in 
the p - o plane of the combination of constraints is the intersection of the feasible 
regions of the individual constraints. 

First, we note one fundamental inequality constraint: a cannot be negative. 

a > 0 

In all figures in this appenduc, the feasible region for this constraint lies above 
the p-axis. When o = 0, the random variable degenerates to a constant. 

In Figure A-1, using Mathematica™ (Wolfram, 1991), we plot five illustrative 
inequality constraints on various percentiles of the distribution of risk. Here, we 
plot the straight lines for the five illustrative constraints for percentiles = 0.023, 
0.159, 0.500, 0.841, and 0.977; these percentiles correspond to z = -2, -1, 0, -t-1, 
and +2, respectively. 
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We propose 14 principles of good practice to assist people in performing and reviewing probabilistic 
or Monte Carlo risk assessments, especially in the context of the federal and state statutes concerning 
chemicals in the environment. Monte Carlo risk assessments for hazardous waste sites that follow 
these principles will be easier to understand, will explicitly distinguish assumptions from data, and 
will consider and quantify effects that could otherwise lead to misinleipretation of the results. The 
proposed principles are neither mutually exclusive nor collectively exhaustive. We think and hope 
that these principles will evolve as new ideas arise and come into practice. 

KEY WORDS: Probabilistic risk assessment; Monte Carlo. 

1. INTRODUCTION 

For over 50 years, Monte Carlo (MQ techniques 
have been used in physics, chemistry, and many other 
disciplines to compute difficult multi-dimensional inte­
grals. One example of this use is to combine probability 
distributions for several input variables to estimate prob­
ability distributions for one or more output distribu-
tions.^'^"' The widespread use of Monte Carlo 
techniques in public health and environmental risk as­
sessment promises significant improvements in the sci­
entific rigor of these assessments. Because Monte Carlo 
methods are more computationally intensive than the 
"deterministic" or "point estimate" methods in com­
mon use today, some people have suggested that Monte 
Carlo analysis not be widely adopted at this time. We 
believe that this is an overreaction, but we recognize the 
need for safeguards and precautions to reduce mistakes 
and prevent abuses. 

• Alceon Corporation, P.O. Box 2669, Cambridge, Massachusetts 
02238-2669. 

' Ogden Environmental and Energy Services, 239 Littleton Road, Suite 
7C, Westford, Massachusetts 01886. 
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We propose 14 principles of good practice in this 
article to assist people in performing and reviewing 
probabilistic risk assessments, especially in the context 
of the federal and state statutes concerning chemicals in 
the environment. Monte Carlo risk assessments for haz­
ardous waste sites that follow these principles will be 
easier to understand, will explicitly distinguish assump­
tions from data, and will consider effects that could oth­
erwise lead to misinterpretation of the results. These 
proposed principles arise from years of experience con­
ducting and reviewing MC risk assessments and from 
conversations with many knowledgeable people in man­
ufacturing companies, consulting companies, law firms, 
universities, nonprofit organizations, and government 
agencies. We think and hope that these principles will 
evolve as new ideas arise and come into practice. 

Before proposing the 14 principles, we agree that 
each risk assessment, whether deterministic or probabil­
istic in design, must have a clearly defined assessment 
end point*') and must contain all the information such 
that a knowledgeable person can reproduce and then 
evaluate the analysis from the material presented in the 
final report.*"' 
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Fig. 1. Comparison of frequency distributions on linear and 
logarithmic scales. 

ply missing information or to supplement partial in­
formation. If empirical measurements are not available 
for any reason, use and document accepted techniques— 
such as the Delphi method*'"'—to estimate the input 
distributions for nonmeasured variables. 

2.8. Principle 8 

Discuss the methods and report the goodness-of-fit 
statistics for any parametric distributions for input vari­
ables that were fit quantitatively to measured data. Show 
plots of the parametric fits and the data on the same axes. 
Discuss the implications of any important differences. If 
any distribution was generated qualitatively or by expert 
judgment, discuss the techniques used.*'*> 

2.9. Principle 9 

Discuss the presence or absence of moderate to 
strong correlations between or among the input varia­
bles. By strong correlation, we mean |p| ^ 0.6 or so. In 
many, but not all, practical situations, the absolute values 
of the correlations are less than 0.6. If so, the presence 

of moderate to strong correlations will have little effect 
on the central portions of output distributions"" but may 
have larger effects on the tails of the output distributions. 
If it is possible that one or more moderate to strong 
correlations exist but no data are available from which 
to estimate them, perform Monte Carlo simulations with 
the correlations (i) set to zero and (ii) set to values con­
sidered high but plausible to leam if the possible cor­
relations are important in the analysis. Display and 
discuss the results of these correlation sensitivity anal­
yses and computational experiments, and state the prac­
tical effect, if any, of including or ignoring the 
correlations among the input variables. 

2.10. Principle 10 

Provide detailed information and graphs for each 
output distribution in the text and/or in an appendix. At 
a minimum, we suggest the foUowing for each output 
variable: (i) a graph of the variable (in either log scale, 
linear scale, or both, depending upon the shape of the 
distribution) that clearly shows (a) the 10"* risk and the 
10~* risk, or other allowable risk criteria, and (b) the 
point estimate of risk calculated by the deterministic 
method, and (ii) a table of the mean, the standard de­
viation, the minimum (if one exists), the Sth percentile, 
the median, the 95th percentile, and the maximum (if 
one exists). In Fig. 1, the histogram of estimated risk in 
the lower panel (on the log scale) gives a greater un­
derstanding of the variability in the output than does the 
histogram of the same results in the upper panel (on the 
linear scale). In Fig. 2, the histogram and the cumulative 
histogram in the upper and lower panels, respectively, 
display the variability of the output differently, but it is 
often useful to include both plots because each high­
lights a different aspect of the results. The graphs shown 
in Figs. 1 and 2 display the variabilities in the calcula­
tions, not the uncertainties. 

2.11. Principle 11 

Perform probabilistic sensitivity analyses for all of 
the key inputs represented by a distribution in the Monte 
Carlo analysis in such a way as to distinguish the effects 
of variability from the effects of uncertainty in the in­
puts. Display the results of these computational experi­
ments in an appropriate graph.*" The forms of the graphs 
will vary depending upon the method used to perform 
the probabilistic sensitivity analyses, but they should 
make clear which input variables contribute most 
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current conditions, a study to estimate risks for the rea­
sonably foreseeable future conditions, and a study to es­
timate cleanup targets. 

We have proposed these 14 principles of good prac­
tice as aids to performing or reviewing human health 
and ecological risk assessments done using MC tech­
niques. While we favor the widespread use of MC tech­
niques, we recognize the need for safeguards and 
precautions to reduce mistakes and prevent abuses. As 
proponents of the new methods, we hope that these pro­
posed principles are general enough to show the standard 
of practice needed for conducting a MC assessment. We 
further hope that these ideas promote careful studies and 
innovation, which, in turn, create new insights and prin­
ciples of good practice. 

Several limitations apply to the ideas in this paper. 
First, the principles proposed are not mutually exclusive; 
some overlap with each other. Second, the principles 
proposed are not collectively exhaustive; for example, 
we have not proposed a principle concerning model un­
certainty*"' nor one concerning the truncation of un­
bounded parametric input distributions (although the 
effects of truncation on percentiles and moments may be 
investigated through computational experiments and 
sensitivity analyses). Third, not all of these principles 
need apply to every study because not all of the prin­
ciples are equally important in every situation. Fourth, 
the principles proposed are not inflexible recipes such as 
guidance manuals often present; we have instead tried 
to suggest the spirit of good practice without dictating a 
fixed and inviolate set of methods. Fifth, some of the 
principles are simply beyond the state of the art in some 
situations; for example, it is not now possible to fulfill 
all the proposed principles for a three-dimensional finite 
element model of time-varying ground water transport. 
Sixth, some of the principles are excessively burden­
some for simple assessments. Notwithstanding all these 
limitations, we hope that the proposed principles will 
contribute to the quality of the MC studies undertaken. 
We further hope that these proposed principles will en­
courage others to refine these ideas to develop and pub­
lish new ones. 
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'With desktop computers as poweiful as mainframes were jusi a few years ago, 
analysts can now use commercial software to estimaie full probabilily 
distributions for—not just point estimates of^health risks experienced by 
people chronically exposed lo toxic chemicals at or near hazardous waste sites 
Even though probability is the central concept in risk assessment, and even 
though probabilistic methods offer strong advantages and insights os compared to 
the "deterministic" methods now required by U.S. Environmental Protection 
Agency's guidance manuals, analysts have only begun lo use probabilistic 
methods at Supeifund sites 

In this paper, we exanune a simplified case study using Monte Carlo methods to 
estimate full distributions of public health risk We demonstrate the use oJ 
"toggles" to isolate the contributions of different inputs, and we also offci new 
graphical methods to communicate the results to risk managers and concerned 
citizens. 

INTRODUCTION 

Risk assessments thai follow guidance published by the U.S. Enviroiimenral Protection 
Agency (EPA) combine a series of average, conservative, upperbound, and wor.st-case 
assumptions to derive a point estimate of risk that is conservative, i.e.. proteciivc of public 
health (EPA. 1989a; EPA. 1989b). Although EPA calls for analyses which address 
Reasonable Maximum Exposure (RME) to receptors, the concept of Reasonable Ma.vimum 
Exposure is never fully defined (EPA, 1989a;b). 

Conservative point estimates of risk calculated with EPA's current methods ha\e three major 
limitations. First, by selecting a combination of average, conservative, and worst-case 
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assumptions, risk assessors and risk managers have no way of knowing the degree of 
conservatism in an assessment. Second, by setting the bias high enough to swamp the 
uncertainty for each of many variables, the risk assessment considers scenarios that will rarely 
if ever happen. Third, it is meaningless to run traditional sensitivity analyses (e.g., to make 
calculations at ±10 or ±25 percent from each input value) to determine the uncertainties in the 
final point estimates because many of the input variables are at or near their maxima. Thus, 
the current procedures offer comfort if the estimated risks falls below a de minimis value, but 
they offer no insight if the estimated risk exceeds a de minimis value. 

Because conservative assumptions usually combine in multiplicative ways, results based on 
EPA's cuaent methods rarely if ever capture the true risk of a situation or a behavior. The 
calculated point estimate usually falls far above the 95̂ *̂  percentile of the true nsk range 
(Environ, 1991). Monte Carlo simulations can estimate the full risk distributions, thereby 
putting the point estimates into a full and proper context. 

Monte Carlo simulation, developed by physicists over 50 years ago and long used by 
engineers in many fields, addresses the weaknesses of the current nsk assessment methods 
identified above (Burmaster et al., 1990). In extending the regular methods used in public 
health and ecological risk assessments, probabilistic techniques add several steps to estimate 
both point values and full distributions for the exposures and risks (Smith, 1991). First, the 
analyst determines a continuous or discrete probability density function (PDF) to describe each 
of the variables to be included in the analysis. In this step, the analyst must also determine if 
any correlations exist among the input variables and take appropriate action if necessary. 
Second, the analyst uses suitable software to make many realizations of the model. For each 
realization, the computer draws one random value from the appropriate distribution for each of 
the random variables in the model, and computes and stores a smgle result. This computation 
is repeated many times. Third, the analyst views the results and establishes the shapes of the 
distributions for intermediate and final results, and various statistical summaries of the 
results. In this framework, a complete risk distribution is derived by combining the 
distributions for the antecedent variables. These probabilistic techniques make the analyses 
more infoimative for risk managers and members of the public (Finkel. 1990). These new 
methods are illustrated in the first two fully probabilistic risk assessments prepared for 
hazardous waste sites regulated under the federal Superfund program (Ebasco, 1990; Environ, 
1991). 

In Monte Carlo simulation, each of many input variables can become a random variable with 
known or estimated PDF. (Equivalently. an input variable can be specified by a cumulative 
distribution function (CDF)). Within this framework, a variable takes on a range of values 
with a known probability. 

The histograms for the estimated risks from exposure to a single compound are often highly 
non-Gaussian in shape for two rea.sons. First, some or all of the input variables may not have 
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normal or even symmetric distributions. Second, the input variables usually enter the 
formulae by multiplication and division (and subsequent summation), so that even if all 
inputs have Gaussian distributions, the results will not. For risk from exposure to a single 
compound, the central limit theorem of statistics implies that the product of many 
distributions tends to a lognormal distribution, regardless of the distributions of the individual 
factors (see a statistical text, e.g., Benjamin and Comell, 1970). 

A SIMPLIFIED CASE STUDY 

To illustrate the application of Monte Carlo simulation to health risk assessment, we consider 
a simplified case study of a hypothetical site. We estimate the PDFs and summary statistics 
for the Incremental Lifetime Cancer Risk (ILCR) for one scenario involving dermal exposures 
to benzo(a)pyrene (BaP) found in soils. We chose point values and distributions for the inputs 
that are reasonable in view of the current knowledge and current EPA guidance documents. 

As a case study, we consider a hypothetical site — an old industrial site with BaP in the 
surface soils — that a City Council may buy and convert to a park. Since we want to 
illustrate the use of Monte Carlo simulation to estimate a full distribution for health risk, we 
consider only one of the many scenarios and only one of many possible exposure pathways 
which could be considered for this site and its proposed use. This scenario considers children 
who are exposed to surface soils while playing in the new park. We make conservative and 
simplifying assumptions concerning the children's dermal contact with the soil. Given the 
uncertainties inherent in an exposure assessment, this scenario is constructed in accordance 
with current EPA guidelines and uses conservative (or health-protective) assumptions, in the 
spirit of analyzing the RME case, rather than worst-case assumptions. 

THE EXPOSURE MODEL 

To estimate health risks, we first estimate the average daily dose of BaP that a person receives 
in units of milligram of bioavailable chemical per kilogram of body weight per day 
(mg/(kg«d)), averaged over a 70-year life (abbreviated as the ADD(life)). Following the standard 
method (EPA, 1989b), we then estimate the Incremental Lifetime Cancer Risk by multiplying 
the ADD(life) by the Cancer Potency Factor (CPF). Exhibit 1 gives the equations used to 
estimate ADD(life) and ILCR for this case study. 

McKone recently published a model to estimate the uptake of organic chemicals from a soil 
matrix deposited onto the skin surface (McKone, 1990). In the model, the stratum corneum is 
the barrier to uptake, and the amount of chemical which passes through the stratum comeum 
represents the bioavailable dose. The model depends on scenario-specific inputs, soil 
properties, skin properties, and chemical properties of the soil contaminants. We use the one­
time or unit-deposition model in this simplified analysis. McKone derives a Personal 
Exposure Factor (PEF) which, when multiplied by the concentration of the chemical in the 
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soil, estimates the average daily dose on a day of exposure. We identified the most sensitive 
variables in McKone's model by standard sensitivity analyses. 

THE SPREADSHEET MODEL 

Exhibit 2 shows the spreadsheet for estimating doses and risks for this case study. Left of the 
vertical bar, the spreadsheet lists all the variables considered in this analysis, along with point 
estimates for the variables and parameters for the probability distributions. For clarity and 
subsequent analysis, we group the input variables as shown: exposure scenarios, soil proper­
ties, skin properties, chemical properties, soil concentrations, relative bioavailability, and can­
cer potency factor. For each of the 12 variables with probability inputs, the spreadsheet has a 
0,1 toggle to select between the point value (activated by 0) and the PDF (activated by I). 

Right of the vertical bar, the spreadsheet calculates intermediate results and reports the 
estimated ILCR ( and logio ILCR) in the lower right comer. As shown here, all toggles are 
set to 0 and thus the spreadsheet has calculated the point estimate for ILCR. The spreadsheet 
estimates the Incremental Lifetime Cancer Risk from chronic low-dose exposure to BaP via 
dermal contact with soils, in keeping with the methods recommended by EPA (EPA, 
1989a;b). In the absence of specific information on possible synergisms or antagonisms 
among carcinogenic compounds, the total ILCR is estimated by summing the values for each 
compound over all pathways (although only one pathway is specified for this analysis). 

INPUT VALUES AND DISTRIBUTIONS 

With the exposure model complete, we identify point estimates for all of the model inputs, 
find in the literature or formulate distributions for the inputs we want to vary, and put all of 
the information into an appropriate simulation program. For use in the exposure model, we 
formulate distributions for the concentration of BaP in the site soils and the CPF. Based on 
the results of the sensitivity analysis, we formulate distributions for key variables in the 
McKone model: body weight, the time soil stays on skin, average body surface area, fraction 
of skin area exposed, soil loading, bulk density of soil, and skin water content. We also 
formulate distributions for exposure days per week, exposure weeks per year, exposure years 
per life, BaP soil concentration, and the CPF for BaP. Thus, five of the seven groups of 
variables—exposure scenario, soil properties, skin properties, soil concentrations, and cancer 
potency factor—include one or more variables which a toggle can switch between a point 
estimate and a distribution. 

In this case study, we use three common distributions to describe the key model inputs: the 
normal or Gaussian distribution, the lognonnal distribution, and the uniform distnbution. We 
denote random variable X with a normal distribution as X - Normal (|i, o), where |i and o 
represent the arithmetic mean and standard deviation, respectively. Similarly, the lognormal 
distribution is denoted as X ~ Lognormal (m, s) where m and s represent the anthmetic mean 
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and standard deviation of the underlying normal distribution, respectively. (The underlying 
nonnal distribution is generated by taking the logarithms of the values in the distribution). 
Finally, we use the notation X ~ Uniform (a, b) to show that the random variable X is 
distributed urifformly between fixed minimum (a) and maximum (b) values. 

Exhibit 2 shows all the inputs chosen for the point values and the distributions, along with a 
reference. All of the point values are reasonable in the sense that EPA has or could readily 
endorse the values for a particular site. 

Most people intuitively understand that some or all of the variables in the various groups are 
truly stochastic in nature. We go further than most analysts though, and we consider that CPF 
values are also stochastic. After all, EPA discusses CPF values in probabilistic language as 
representing the 95̂ *̂  percentile of slope of the linearized multistage model applied to animal 
data and extrapolated to humans. Extending the ideas in earlier publications (Crouch, 1983; 
Crouch & Wilson, 1981), Crouch re-evaluated the CPF for BaP (Crouch, 1990). Based on this 
information, we model the ingestion CPF for BaP with a lognormal distribution: CPFgaP ~ 
Lognormal (-0.79, 2.39) in units of (mg/(kg«d))'l). Although EPA has never published an 
ingestion CPF for BaP in its Integrated Risk Information System, the value it now uses in 
practice, 11.5 (mg/(kg»d))'^) (EPA, 1986), falls at approximately the 91^^ percentile of 
Crouch's distribution. (We note that the cross-assignment of the CPF from the ingestion 
pathway to the dermal contact pathway, though accepted in practice, is inconect.) 

ESTIMATION AND PRESENTATION OF RISKS 

We now estimate full distributions of health risks for this case study, using commercial 
software (Crystal Ball. V2.0 (Decisioneering, 1991)) in conjunction with the spreadsheet, and 
we compare the distributions to the point estimate of risk. We consider different ways to 
present the risks in a graphic format to both non-technical and technical audiences, as drawn 
from various widely recognized sources (Chambers et al., 1983; Cleveland. 1985; Finkel, 
1990; Graham and Henrion, 1984; Ibrekk and Morgan, 1987; Tufte, 1983; 1990; Tukey, 
1977; Systat, 1991). 

The Deterministic Case 
The ILCR shown in Exhibit 2, namely 2.96E-05, is the "'conservative point estimate" 
calculated by combining the point values of all the inputs. Although this point estimate of 
risk is the usual stopping point for risk assessments, we compare it to the full distributions. 
We also compare EPA's target risk range to the full distnbutions, i.e., the range from: 
ILCR = 10""*, the risk at which EPA always requires remediation, to ILCR = 10"^, the 
Agency's "point of departure" for remedial goals under the Superfund Program (EPA, 1990). 
In Exhibits 3-13, the three vertical lines locate the limits of EPA's target risk range and the 
point estimate on the full distributions. 
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The Probabilistic Case with All Distributions Activated 
Exhibits 3-7 show different ways to present the results of 5,(X)0 realizations of the spreadsheet 
model with distributions for all 12 random variables activated. Each method highlights a 
different aspect ofthe results, and each has different strengths and weaknesses, depending on 
the technical sophistication of the audience. 

Exhibit 3 summarizes the full distribution of risk as a table of statistics, including the mean, 
median, mode, standard deviation, and deciles for the ELCR and the logio ELCR. As a 
nongraphical method, this approach has only slightly more appeal than an ordered list of the 
5,000 results! Even engineers have difficulty interpreting the results when presented in this 
fashion, although it is possible to discem that the conservative point estimate falls above the 
95* percentile of the full risk distribution. 

Exhibit 4 compares the histograms of the ELCR and logic ILCR for the case study. The 
graphs reveal important features not evident in the previous table. In linear space, the full 
distribution has a long right tail, a high variance, and a mode far below the conservative point 
estimate. In this upper histogram, only 4,941 of the results from the 5,000 realizations are 
visible within the domain in the graph. In logarithmic space, the full distribution has more 
symmetry, with the qualitative feel of a normal distribution. In logarithmic space, it is easier 
to grasp the relationships among the distribution, the conservative point estimate, and EPA's 
target risk range of 10"^ to 10" .̂ In this lower histogram, more realizations (4,990 of 5,0(X)) 
are visible in the graph, but some still fall outside the domain graphed. Each histogram in 
Exhibit 4 confirms that the conservative point estimate falls well above the 95* percentile of 
the full risk distribution. 

Exhibit 5 compares the ordinary histogram and the cumulative histogram for the logio ILCR 
for this case study. Although these graphs contain identical information, an informal poll 
revealed that non-technical audiences understand the ordinary histogram far more readily than 
the cumulative histogram and that technical audiences prefer to have both presented. Again, 
the vertical lines locate the conservative point estimate and EPA's target risk range on the full 
distribution, and again, only 4,990 results from the 5,000 realizations are visible. 

Exhibits 6 and 7 show a "box-and-whiskers" diagram and a probability plot of the logio 
ILCR, complete with lines to locate the conservative point estimate and EPA's target risk 
range on the full distribution. As presented here, the box-and-whiskers plot marks the 
minimum and maximum at the ends of the whiskers, the 10* and 90* percentiles as the 
short crossbars, the 25* and the 75* percentile as the ends of the box, and the median as the 
crossbar near the center of the box. For a technical audience, the probability plot in Exhibit 6 
shows that the 5,000 realizations of logio ILCR closely follow a lognormal distribution for 
2.5 or 3 standard deviations above and below the median. 
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The Probabilistic Case Showing the Contributions from Different Inputs 
Uncertainties propagate and combine through a series of calculations. While it is highly 
unlikely that the variabilities will combine in a purely additive or multiplicative way to 
produce the theoretically largest possible uncertainty, it is true that the overall uncertainty in a 
calculation can never be smaller than the uncertainty associated with the least certain step in 
the chain. For this reason, it is useful to disaggregate the contributions from the different 
groups of input variables, using the toggles to isolate the effects. 

Exhibit 8 shows the contributions of the variables in each of five input groups in a table of 
statistics similar to those for logio DLCR in Exhibit 3. In other words. Exhibit 8, a novel 
type of probabilistic sensitivity analysis, tabulates the distributions of logio ILCR that result 
from random realizations of each of the five input groups while keeping the other four 
constant. Again, this table has little or no intuitive appeal, although it does demonstrate that 
the conservative point estimate combines assumptions that exceed the 95* percentile for the 
variables in the exposure group and exceed the 90* percentile for the CPF. To visualize the 
results of this probabilistic sensitivity analysis in graphs, we present several different views of 
the same information in Exhibits 9-13, each with lines to locate the conservative point 
estimate and EPA's target risk range for comparison. 

Exhibits 9 and 10 parallel earlier exhibits but also show the contributions from each group of 
variables. In each exhibit, the top histogram shows the distribution with all the toggles 
activated as a frame of reference. The second panel shows the risk distribution with only the 
toggles in the exposure group activated. The remaining panels in Exhibits 9 and 10 show the 
contributions from the variables in the remaining groups, as labeled. Exhibit 11 condenses the 
cumulative distributions from the previous exhibit. Exhibits 12 and 13 show the box-and-
whiskers plots and the probability plots for each contributing group of input variables. 

In different ways. Exhibits 9-13 portray the same information, and each allows us to 
understand the contributions of each of the groups of input variables in different ways. In 
declining order, the greatest variabilities and uncertainties flow from the CPF variable, the 
variables in exposure group, and the concentration variable. We see support for this assertion 
in the relative widths of the histograms in Exhibit 9, the relative steepness of the cumulative 
distribution in Exhibits 10 and 11, the relative widths of the boxes and the whiskers in 
Exhibit 12, and the relative slopes of the probability plots in Exhibit 13. Interestingly, these 
same graphs show that EPA makes its most conservative policy assumptions to compensate 
for the uncertainty of the variables with the greatest contributions. 

DISCUSSION 

We promote the use of spreadsheets and Monte Carlo software in practical applications, even 
though some simple situations (e.g., the multiplication of many variables distributed 
lognormally) can be calculated or well approximated by closed-form expressions (Shlaykhter, 
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1991, citing Broadbent, 1956, and Fenton, I960) for two reasons. First, most practical risk 
assessments, such as those for hazardous waste sites, are far more complicated than can be 
addressed analytically. Second, few risk assessors have the mathematical skill to manipulate 
the closed-form methods (see Springer, 1979). 

New software used in conjunction with spreadsheets on powerful desktop computers provides 
an easy and fast way to estimate probability distributions for human health risks in the 
assessments of sites with chemical contamination. While the methods are straightforward and 
can easily be extended to linked spreadsheets and correlated input variables (Decisioneering, 
1991), continued research is needed to specify input distributions for exposure-related variables 
and new methods are needed to quantify the distnbutions appropriate for CPFs. 

In this simplified case study, we note that the point estimate is truly conservative because 
calculating the point estimate compounds many conservative assumptions and values. When 
the distribution of ILCR is presented as a histogram with the point estimate demarked, the 
distribution is barely visible in linear space. For this reason, we recommend that risk 
assessors also present the estimated distributions with point estimates demarked in logarithmic 
space in a way that reveals the order of magnitude of the results. 

Although we have chosen a simpUfied case study to illustrate the calculation and presentation 
of distributions of exposure and risk, commercial software can be applied to far more general 
cases, including: multiple compounds, multiple exposed populations, multiple exposure 
pathways, and multiply correlated exposure variables (through the technique of Iman and 
Conover (1982) and Iman and Davenport (1982)). With the combination of Excel™ and 
Crystal Ball™, an analyst can design and perform a probabilistic risk assessment using any set 
of algebraic, equilibrium, or steady state models in linked spreadsheets. As a general 
proposition, any situation that can be modeled in.Excel™, a full-featured spreadsheet, can then 
be simulated in Crystal Ball™ by specifying either common distributions from built-in 
"Gallery" (e.g., uniform, triangular, normal, lognormal, exponential, weibull, gamma, beta, 
poisson, binomial, geometric, and hypergeometric) or a custom distribution (using (x,y) pairs 
to specify the breakpoints of a piecewise linear CDF), By combining the features of the 
spreadsheet and the simulation software, an analyst can also model mixture problems and can 
denve new distributions, e.g., the distribution of a function, say, f(X) = X- •', where X is 
distributed lognormally. 

RECOMMENDATIONS 

Reviewing the various ways to present the overall distribution for ILCR. we recommend a 
combination of the ordinary histogram and the cumulative histogram as shown in Exhibit 5 
(sec similar recommendation in Ibrekk and Morgan, 1987), perhaps in combination with a 
box-and-whiskers plot to the same scale along the lower edge of the ordinary histogram. Wc 
find some highly technical audiences prefer the graph m Exhibit 7. We al.so recommend that 
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analysts include a vanety of toggles in each model to isolate the contribution from each of 
several groups of stochastic variables. To display these results, we recommend the graphs in 
Exhibits 9 and 10 (or 11), perhaps supplemented with Exhibit 13. 

We urge EPA to endorse and encourage the use of Monte Carlo simulations as a way to 
supplement and eventually replace current methods. We believe Monte Carlo analysis 
separates risk assessment from risk management in the sense originally recommended by the 
National Academy of Sciences (1983). Monte Carlo techniques provide a method to estimate 
the distribution of risk and to understand the degree of conservatism present in a point 
estimaie. 

LIMITATIONS 

While we believe the strengths of the Monte Carlo methods far outweigh any limitations, this 
case study rests on many assumptions which simplify the calculations but which also limit 
the results. While it is not possible to list all the simplifications, it is important to discuss 
some of the main types and to give illustrations. 

First, this case study uses greatly simplified equations to estimate exposure to chemicals. 
Although the equations follow current federal guidance for public health risk assessments, 
they are dramatic simplifications of reality. A risk distribution based on a model is only 
as good as the model. In this simplified case study, for example, we use only one model 
for dermal exposures and we assign the CPF for ingestion exposures to dermal exposures. 
Each of these two assumptions is the source of additional uncertainty quite outside the 
model and the results. The analyst must acknowledge exogenous sources of uncertainty 
(not included in the model) and discuss their potential for shifting and/or increasing the 
variance of the estimated risk distribution. 

Second, this case study ignores obvious conelations among variables. As an example, 
body weight and skin area are certainly correlated, and the joint distribution of these 
variables is undoubtedly a function of age and sex . 

• Third, even in the Monte Carlo simulations, the case study treats many variables known 
to be stochastic as deterministic. While it is relatively easy to overcome the third class of 
oversimplification and limitation within current knowledge and computational resources, 
more research is needed to address and resolve the limitations imposed by the first two 
classes of simplifying assumptions. 

Finally, although it may seem obvious, inadvertent or deliberate abuse of the Monte 
Carlo approach can occur and does lead to unrealistic and inconect results. With a 
powerful new tool available for use, we must all strive to use it wisely and appropriately, 
especially in regard to the specification of input distributions and functional relationships. 
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EXHIBITS 

EXHIBIT 1. 

Equation to Model Dermal Exposure to Soils 

C s • P E F • D p W • W p Y • Y p L 
ADD(l i te) = .̂ - . . D i n Y ^ v - Y m L ^ ^ 

where; 

ADD(life) = Average Daily (bioavailable) Dose, 

averaged over a lifetime (mg/(kg'd)), 

Cs = soil exposure concentration (mg/kg), 

PEF = personal exposure factor, 

averaged over a day of exposure (kg/(kg'd)), 

DpW = exposure days per week (d/wk), 

WpY = exposure weeks per year (wk/yr), 

YpL = exposure years per lifetime (yr/life), 

DinV = total number of days per year [7 (d/wk) • 52 (wk/yr)]. and 

YinL = total number of years per lifetime (70 yr/life) 

Equation to Estimate Incremental Lifetime Cancer Risk 

ILCR = ADD(life) • CPF 

where: 

ILCR = Incremental Lifetime Cancer Risk, the incremental probability 
that a person will develop cancer during hleiime (probability) 

ADO(life) = Average Daily Dose of a compound, averaged over life during 
which exposure occurs, (mg/(kg'd)) 

CPF = Cancer Potency Factor for a compound, by inges!.on 
((mg/(kg.d))-l) 
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EXHIBIT 2, Spreadsheet for Dermal Contact (One-Time Deposition) 

Veiriables 
Units Point Distribution Parameters 

Estimate 
Parameter Values 

first second 

Exposure Scenano: 

average body weight 
time sol stays on skin 

average body surface area 
fraction of skin area exposed 

skin soil loading 
exposure days per week 

exposure weeks per year 
exposure years per life 

Soil Properties 

soil bulk density, Rho(b) 
soil porosity. Phi 

soil water content, Theta 
organic carbon fraction, foe 

kg 
hr 
m2 
frac 

mg/cm2 
d\vk 
wk/yr 
yr/ life 

kg/m3 
m3/m3 
m3/m3 

frac 

47 

e 
1 4 
0.2 

1 
1 

20 
10 

1600 
05 
0 3 

0 02 

Normal 
l^ormal 
Normal 

Lognormal 
Uniform 
Uniform 
Uniform 
Uniform 

Normal 

Oi.a) 
(Ji.o) 
ai.o) 
(m,s) 
(a,b) 
(a.b) 
(a,b) 
(a.b) 

(M,a) 

47 
6 
1 4 

-2.15 
0 75 
0 5 
5 
5 

1600 

83 
1 

0 17 
050 
1 25 
1 5 
25 
12 

80 

Skin Properties 

skin thickness, Delta(skin) 
skin fat content, f(fat) 

skin water content. Gamma 
boundary layer size, Delta(a) 

m 
kg/kg 

m3/m3 
m 

1 5E-05 
01 
03 

0 0045 
Normal (M.O) 0 3 0 05 

Chemical Properties 

ben2o(a)pyrene Kow frac 
ben2o(a)pyrene Kh frac 

D(air) m2/s 

D(water) m2/s 

Soil Concentrations' 

t>en70(a)pyrene mg/kg 

Relative BioAvailability 

t)enzo(a)pyrene Irac 

Cancer Potency Factor 

t)en2o(a)pyrene (kg-d)/mg 

1 55E+06 
2.04E-05 

5E06 
5E-10 

29 49 Lognormal 

03 

11 5 Lognormal 

(m,s) 281 068 

(m.s) •0 79 2 39 
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EXHIBIT 2. Spreadsheet for Dermal Contact (One-Time Deposition) 
(cont'd) 

Toggle Reference 
(0,1) 

Mabey, 1982 
Mabey, 1982 
McKone, 1990 
McKone.1990 

0 Team, 1991 

USEPA, 1989,1 

0 USEPA, 1986. SPHEM, 
Crouch, 1990 

Variables 

General: 

Units Results 

0 
0 
0 
0 
0 
0 
0 
0 

0 

0 

Team, 1991 (GCA, 
Team, 1991 
Team. 1991 (GCA. 
Team, 1991 (GCA, 
Team. 1991 
Team, 1991 
Team, 1991 
Team, 1991 

Team, 1991 
McKone, 1990 
McKone.1990 
McKone. 1990 

McKone, 1990 
McKone, 1990 
Team, 1991 
McKone, 1990 

1984) 

1984) 
1984) 

skin area exposed 
soil air content. Alpha 

soil total density, Rho(t) 
D(G) 
D(L) 

soil deposition 
soil dep 
del(soil) 

Dermal Contacf 

RG(soil) 
RL(soil) 

D(soil), DGIBG * DURL 
D(skin) 

K(vapor loss from skin) 
Kd 

Uptake fraction 
KuorKelf(slsk) 

c 
b 

PEF (d) 
PEF (life) 
ADO(life) 

BaP dermal contact ILCR 
BaP dermal contact ILCR 

m2 
m3/m3 
kg/m3 
m2/s 
m2/s 
mg 
kg -
m 

m2/s 
m2/s 

kg/(kg-d) 
kg/(kg-d) 
mg/(kg-d) 

prob 
logio 

0 28 
02 

1900 2 
9 41E-08 
3.63E-11 

2800 
0 0028 

5 26E-06 

1 17E+09 
23,808 30 
1 61E-15 
6 48E-16 
9 52E-13 
14,880 00 

019 
3 78E-11 

0 03 
0 03 

1 l lE-05 
8 72E-0a 
2.57E-06 

2 96E-05 
-4 53 
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EXHIBIT 3. Summary Statistics with All Toggles On 

— 

Trials 
Mean 

Median 
Mode 

Standard Deviation 
Variance 

Skewness 
Kurtosis 

Range Width 
Minimum 

Maximum 
Mean Standard Error 

Percentile 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

In 
Linear 
Space 

5,000 
1.78E-06 
1.84E-07 
1.00E-07 
5.52E-06 
3.05E-11 

5 62 
40 26 

3 35E-03 
4 88E-13 
3 35E-03 

0 

4 88E-13 
5.89E-07 
1 18E-06 
1 77E-06 
2 35E-06 
2.94E-06 
3 53E-06 
4 12E-06 
4 71E-06 
5 30E-06 
5 89E-06 
6 48E-06 
7 06E-06 
7 65E-06 
8 24E-06 
8 83E-06 
9 24E-06 
1 OOE-05 
1 06E-05 
1 14E-05 
3 35E-03 

In 
Log 10 
Space 

5,000 
-6.80 
-6.81 
-6.84 
1.13 
1 28 
0 03 
2.85 
9 84 

-12.31 
-2.47 
0.02 

-1231 
-8 70 
-8 27 
-8 00 
-7 79 
-7 58 
-7 40 
-7 25 
-7 09 
-6.95 
-6 81 
-6.67 
-6 53 
-6 37 
-6 21 
-6 04 
-5 83 
-5 61 
-5 35 
-4 96 
-2 47 
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EXHIBIT 4. Comparison of Frequency Distributions on Linear and 
Logarithmic Scales 

Cell T36 
54 

^ 5 

o 

.41 

.27 

14 

00 

Frequency Distribution 4941 Trials 
r 2.688 

0.0084) 

672 

CD 

e 

O 
or 

1.50e-5 3.006-5 
prob 

4.50^-5 S.OOe-S 

Cell T37 
01 

Frequency C istribution 4990 Trials 
65 
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EXHIBIT 5. Comparison of Frequency Distribution and Cumulative 
Distribution on Logarithmic Scale 

Cell T38 
1.00 

zn 

o 
Q_ 

.75 

.50 

25 

00 T 
10.00 

Forecast: BaP dermal 

Cumulative 

:ontact ILCR turn 

C istribution 4990 Trials 

4,990 

C 
CD 

n 
cc 

-8.00 
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EXHIBIT 6. Box and Whiskers Diagram with All Toggles On 

all 

-15 -10 -5 0 

Logio of ILCR 

EXHIBIT 7. Probability Plot of ILCR with All Toggles On 

3 _ 

0) 

> 
• a 

O 
0) 
Q. 
X 

LLl 

1 -

-1 

-3 

Logic of ILCR 
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EXHIBIT 8. Summary Statistics for Different Contributing Factors in 
Logarithm Space 

Trials 
Mean 

Median 
Mode 

Standard Deviation 
Variance 

Skewness 
Kurtosis 

Range Width 
Minimum 

Maximum 
MSE 

Percentile 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

All 
Toggles 

On 

5,000 
-6.80 
-6.81 
-6.84 
1.13 
1.28 
0.03 
2.85 
9.84 

-12.31 
-2.47 
0.02 

-12.31 
-8.70 
-8.27 
-8.00 
-7.79 
-7.58 
-7 40 
-7.25 
-7 09 
-6.95 
-6.81 
-6.67 
-6.53 
-6.37 
-6.21 
-6.04 
-5 83 
-5 61 
-5.35 
-4 96 
-2 47 

Exposure 
Toggles 

On 

5,000 
-5 15 
-5.14 
-5.19 
0.36 
0 13 

-0.19 
2 95 
2 57 

-6 49 
-3.92 
0.01 

-6.49 
-5.74 
-5.60 
-5.52 
-5.45 
-5 39 
-5 33 
-5.28 
-5 23 
-5 18 
-5 14 
-5.09 
-5 04 
-4 99 
-4 94 
-4.89 
-4 84 
-4 78 
-4.69 
-4 58 
-3 92 

Soil 
Toggles 

On 

5,000 
-4 53 
-4.53 
-4 52 
0.02 
0.00 

-0.14 
3.03 
0.12 

-4 60 
-4.48 
0.00 

-4.60 
-4 56 
-4 55 
-4 55 
-4.54 
-4 54 
-4 54 
-4 54 
-4 53 
-4 53 
-4 53 
•4.53 
-4 52 
-4 52 
-4 52 
-4 52 
-4,52 
-4 51 
-4 51 
-4 50 
-4 48 

Skin 
Toggles 

On 

5,000 
-4 54 
-4 53 
-4 52 
0 08 
0 01 

-0 75 
4 30 
0 71 

-5 03 
-4 31 
0 00 

•5 03 
-4 68 
-4 64 
-4 62 
-4 60 
-4 58 
-4 57 . 
-4 56 
-4 55 
-4 54 
-4 53 
-4 52 
-4 51 
-4 50 
-4 49 
-4 48 
-4 47 
-4 46 
-4 44 
-4 42 
-4 31 

Cone 
Toggles 

On 

5,000 
-4 78 
-4 78 
-4 76 
0 30 
0 09 

-0.01 
3 02 
2.22 

-5 85 
-3 63 
0 00 

-5 85 
-5 26 
-5 16 
-5 08 
-5 03 
-4 98 
-4 93 
•4 89 
-4 85 
-4 82 
-4 78 
-4 74 
-4 70 
-4 66 
-4 62 
-4 58 
-4 53 
•4 47 
•4 40 
-4 29 
•3 63 

Toxicity 
Toggles 

On 

5,000 
•5 94 
-5 93 
-5 88 
1 04 
1 07 

-0 01 
2 96 
7 81 

•9 55 
•1 75 
0 01 

-9 55 
-7 64 
-7 27 
-7 01 
-6 81 
-6 64 
•6 48 
•6 34 
•6 20 
-6 07 
•5 93 
•5 80 
-5 67 
•5 54 

•5 39 
-5 23 
•5 06 
•4 86 
-4 61 
-4 23 
•1 75 
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EXHIBIT 9. 
Contributions to Overall Uncertainty 

all 

exposure 

soil t " 

t 

skm 
I.. 

cone 

CPF 

f.«auw«7( •>! 

4 0 «l I 

3 

- I 
it 

E 

EXHIBIT 10. 
Contributions to Overall Uncertainty 

all 

exposure 

soil 

skm 

cone 

CPF 
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EXHIBIT 11. Cumulative Distributions for ILCR 

EXHIBIT 12. Box and Whiskers Diagram Showing Components 

all 

expos 

soil 

skin 

cone 

CPF 

- - K i l t -

: 

- iy-

^ 

•15 -10 -5 

Logio of ILCR 
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EXHIBIT 13. Probability Plot of ILCR Showing Components 

5 

0) 

> 

"o 
Q. 
X 
m 

Logio of ILCR 
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Monte Carlo Techniques for Quantitative Uncertainty 
Analysis in Public Health Risk Assessments 
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Most public health risk assessments assume and combine a series of average, conservative, and 
worst-case values to derive a conservative point estimate of risk. This procedure has major limi­
tations. This paper demonstrates a new methodology for extended uncertainty analyses in public 
health risk assessments using Monte Carlo techniques. The extended method begins as do some 
conventional methods—with the preparation of a spreadsheet to estimate exposure and risk. This 
method, however, continues by modeling key inputs as random variables described by probability 
density functions (PDFs). Overall, the technique provides a quantitative way to estimate the prob­
ability distributions for exposure and heahh risks within the validity of the model used. As an 
example, this paper presents a simplified case study for children playing in soils contaminated 
with benzene and benzo(a)pyrene (BaP). 

KEY WORDS: Risk assessment; Monte Carlo simulation; uncertainty analysis. 

1. INTRODUCTION 

Following guidance published by the U.S. Envi­
ronmental Protection Agency (EPA), most public health 
risk assessments assume and combine a series of aver­
age, conservative, and worst-case values to derive a point 
estimate of risk that is presumed to be conservative and 
protective of public health.*''^' The Interim Final Human 
Health Evaluation Manual,̂ ^^ the most recent guidance 
document from the EPA headquarters, states: 

. . . Each intake variable in the equation has a range of values. 
For Superfund exposure assessments, intake variable values 
for a given pathway should be selected so that the combination 
of all intake variables results in an estimate of the reasonable 
maximum exposure for that pathway. As defined previously, 
the reasonable maximum exposure (RME) is the maximum ex­
posure Ihat is reasonably expected to occur at a site. Under this 
approach, some intake variables may not be at their individual 

' Alceon Corporation, P.O. Box 2669, Cambndge, Massachusetts 02238. 
' Present address: Harvard School of Public Health, 665 Huntington 

Avenue, Bldg. 1 Room G13B, Boston, Massachusetts 02115. 
' Cambridge Environmental, 58 Charles Street, Cambridge, Massa­

chusetts 02141. 

S3 

maximum values but when in combination with other variables 
will result in estimates of R M E . . . . (p. 6-19, emphasis m the 
onginal) 

Unfortunately, the Agency offers no further defi­
nition—either qualitative or quantitative—for the key 
concept of reasonable maximum exposure. The guidance 
does not address the amount of conservatism which should 
be used in risk assessment. 

The current risk assessment procedures have three 
major limitations. First, by selecting a combination of 
moderate, conservative, and worst-case assumptions, risk 
assessors and risk managers have no way of knowing 
the degree of conservatism in an assessment. Since cur­
rent risk assessments generally lack sufficient uncer­
tainty analysis, risk managers and the public may have 
a difficulat time putting the point estimates into some 
kind of perspective. Second, by setting the bias high 
enough to swamp the uncertainty for each of many var­
iables—but not necessarily all the variables—risk as­
sessments may consider scenarios that will rarely (if ever) 
happen. Third, it is fundamentally meaningless to run 

O272.4332/92A)300.O053J06 50/1 C 1992 Society for Risk Analysis 
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the site. Acme cleared the site and removed the visually 
stained surface soils. However, in further talks with the 
city last year, Acme agreed in principle to sell the prop­
erty for inclusion in the park. Depending on the outcome 
of a site risk assessment for the surface soils on the site. 
Acme retains the right to limit the use of the site to 
activities with little or no soil contact (e.g., a parking 
lot with concession stands, or a swimming pool with 
large concrete pavilions). 

Since our purpose is to illustrate the use of Monte 
Carlo simulation, we consider only one of the many 
scenarios which could be considered for this site. The 
scenario considers children who would play in the park 
extension contemplated for the old Acme/Baker prop­
erty. We assume that the children (from ages 8-18 years) 
will spend 3 hr per day playing at the park on the site 
and that they visit the park 1 day per week, 20 weeks 
per year for 10 years. We make the conservative and 
simplifying assumption that the children contact the soil 
enough with their hands and lower arms to have a rate 
of soil deposition on their skin of ~ 1 mg/cm^ per day, 
and to ingest -50 mg of soil from the site per day. Given 
the uncertainties inherent in an exposure assessment, this 
scenario is constructed in accordance with current EPA 
guidelines and using conservative (or health-protective) 
assumptions, in the spirit of analyzing the RME case, 
not the absolutely worst case. 

3. EXPOSURE MODELS 

To estimate health effects for compounds with car­
cinogenic potential, we first estimate the average daily 
dose that a person receives in units of milligram of bioa­
vailable chemical per kilogram of body weight per day 
(mg/(kg-d)), averaged over a 70-year life [abbreviated 
as the ADD(life)]. The scenario requires two exposure 
models; (i) incidental ingestion of soil and (ii) dermal 
contact with soil. 

Table 1 shows the 27 variables and constants in the 
two exposure models and the two Cancer Potency Fac­
tors (CPFs). The first two columns of the table show the 
name, symbol, and units of the variable or constant. The 
third column indicates whether the parameter applies to 
the dermal contact model, the soil ingestion model, or 
both. The fourth column gives the point estimates for 
the inputs, and the fifth column shows the parameterized 
distribution we used for those inputs we chose to vary. 
The sixth column specifies the sources of each of the 
point estimates and distributions, and the seventh col­
umn gives the location of the point estimate in the dis­
tribution. All of the point values are reasonable in the 

sense that the EPA has or could readily endorse the val­
ues for a particular site. Table II shows the exposure 
models [used to estimate the ADD(Iife) values] and the 
risk equations. 

3.1. Ingestion of Soil 

In this simplified case, we consider exposures from 
the incidental and inadvertent ingestion of contaminated 
soil (i.e., we include only children who do not exhibit 
pica). Equation (1) in Table II shows the exposure model 
used to estimate the ADD(life) for inadvertent ingestion 
of contaminated soil. 

3.2. Dennal Contact with Soil 

Risk assessments often evaluate exposures from 
dermal contact with contaminated soils. In 1990, McKone 
published a new model which estimates the uptake of 
chemicals from a soil matrix deposited onto the skin 
surface.'" In this model, the stratum comeum is the main 
barrier to uptake, and the amount of chemical which 
passes through the stratum comeum represents the bioa­
vailable dose. The model depends on scenario specific 
inputs, soil properties, skin properties, and chemical 
properties of the soil contaminants. Although both con­
tinuous and one-time deposition versions of the model 
are available, we use the one-time or unit-deposition 
model in this simpiiHed analysis. 

The unit-deposition model derives a Personal Ex­
posure Factor (PEF) which, when multiplied by the con­
centration of the chemical in the soil, estimates the average 
daily dose on a day of exposure. Equation (2) in Table 
II shows the exposure model used to estimate the 
ADD(Iife) for dermal contact with contaminated soil. 
This PEF is averaged over a day of exposure and is a 
function of 17 variables as shown in Eqs. (3)-(5) in 
Table II. (Note that Eqs. (3)-(5) are only given to show 
how the different variables are used in the model. For 
details about the model, see Ref. 9.) 

Since this model requires 17 inputs (and creating 
or finding 17 different parameterized distributions is an 
arduous task), we performed a standard sensitivity analy­
sis to identify the most sensitive inputs. By varying each 
input variable ± 10% from its nominal value while hold­
ing all the other inputs constant, we found those varia­
bles which have the greatest effect on the output when 
changed. If distributions for all 17 of the input variables 
had been available, then we would have performed a 
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Table 11. E.\posurc Model and Risk Equations" 

Soil ingestion model used lo find the ADD(life)'': 

ADD (life) = 

Cs SIngR • RBA • DpW • WpY • YpL IQ-'̂  kg/mg 

BW DinY • YinL 

Dermal contact with soil model used to find the ADD(life)': 

Cs • PEF • DpW WpY • YpL 
ADD(lifc) 

where: 

DmY • YinL 

PEF = 
SL • BF • SA • 0.01 

BW ( i i ^ ) (•--(-
3600 (pt -I- 1000 • e -I- j) - 8) (K, 

SL • 0.01 

0.000005 • K, 

±M1\\ 

K„ 
8, (4.8 X 10-' pJ ,^K,^ + e + K, (<t. - 6)) 

_1_ _ 8,t,„ /,„ K ^ 

SL-0.01 • <t>M4.8xio-'p>/„,jCow-t-e-i-/:>(<t>-Q)) 

(1) 

(2) 

(3) 

(4) 

(p, -t-1000 • 8 -t- 4. - 6) {(4. - 6 ) ^ " D.„K, + 6 ' " D„, J 

Equation used to find the ILCR': 

ILCR = ADD(life) • CPF 

(i) 

(6) 

"See Table I for key to symbols. 
''Average daily dose of a compound, averaged over life during which 
exposure occurs, in units of mg/(kg-d). 

"Incremental lifetime cancer risk, the additional probability that a per­
son will develop cancer during lifetime in which exposure occurs 
(dimensionless probabilily). 

4. POINT ESTIMATES AND PARAMETERIZED 
DISTRIBUTIONS 

In this paper, we use three well-known distributions 
to describe the key model inputs: the normal or Gaussian 
distribution, the lognormal distribution, and the uniform 
distribution. We denote random variable A'with a normal 
distribution as X - Normal (ji, o), where L̂ and cr rep­
resent the arithmetic mean and standard deviation, re­
spectively. Similarly, the lognormal distribution is denoted 
as A" - Lognormal (m, s), where m and s represent the 
arithmetic mean and standard deviation of the underlying 
normal distribution, respectively. (The underlying nor­
mal distribution is generated by taking the logarithms of 
the values in the distribution.) Finally, we use the no­
tation X ~ Uniform (xj, Xj) to show that the random 
variable X is distributed uniformly between fixed mini­
mum (J:,) and maximum {X2) values. 

4.1. Chemical Concentrations in the Soils 

For this hypothetical site, we synthesize a data set 
consistent with the site history. We estimate the expo­
sure point concentration for each chemical in the soils 
as the 95th percentile of the arithmetic mean of the soil 
data (i.e., 3.39 mg/kg for benzene and 29.49 mg/kg for 
BaP). Next, following the Monte Carlo framework, we 
fit lognormal distributions to the synthetic data for each 
chemical to estimate PDFs for the exposure point con­
centrations (where Cs represents the concentration of the 
chemical in the soils on the site in mg/kg): C5be„„„« ~ 
Lognormal (0.84, 0.77) and CJB.P - Lognormal (2.81, 
0.68). 

4.2. Cancer Potency Factors 

Because of the assumptions made and the meth­
odology used in their derivation, CPF values estimated 
from human or animal data are inherently uncertain val­
ues. Incorporating uncertainties into risk assessments re­
quires careful consideration of where such uncertainties 
arise, methods of characterizing those uncertainties, and 
the results of such methodologies (e.g., the sizes of the 
uncertainties) in particular cases. There are many poten­
tial sources of uncertainty, including the experimental 
results, the epidemiological model and doses, the inter­
species extrapolation, and the route extrapolation. Ex­
tending the ideas in earlier publications,*'^'''^ one author 
(EC) evaluated the EPA CPFs for benzene and BaP, and 
estimated the degree to which the EPA values are overly 
conservative (biased) and uncertain. Based on this in­
formation, we parameterize the CPFs for benzene and 
BaP, for use in quantitative uncertainty analyses, as log-
normal distributions conditional on certain modeling as­
sumptions. We assume that extrapolation between animals 
and humans is unbiased if^performed on the basis of 
body weight. We divide the EPA point estimate by the 
amount of bias (the factor by which the EPA value over­
estimates the median) to obtain the median of the dis­
tribution. To be consistent with our notation, we find 
the natural logarithm of this value to describe the distri­
bution. Similarly, we use the natural logarithm of the 
uncertainty associated with the EPA "standard" value 
as the standard deviation. The CPFs for benzene and 
BaP have these distributions (each in units of (mg/ 
(kg-d))-i): CPFb.„„„. ~ Lognormal ( -4 .33 , 0.67) and 
CPFB.P ~ Lognormal ( -0 .79, 2.39). 

We choose the published EPA ingestion CPFs as 
the point estimates of the CPFs for benzene and BaP, 
2.9E-02 and 11.5 (mg/(kg-d))-', respectively."*-^"' These 
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Fig. 1. Frequency and cumulative distributions for ILCR from ingestion of soils contaminated with benzene. 

expected, these output distributions have long right tails, 
high variance, and average values much lower than the 
point estimates. The locations of the point estimates using 
all of the exposure variables shift to the 78th percentile 
for the ingestion of benzene in soil case and they shift 
to the 94th percentile for the dermal contact with BaP 
case. 

The CPFs for benzene and BaP with the distribu­
tions given earlier are group IV random variables. Fig­

ures le and 2e show the distributions for the five measures 
of risk. As expected, we see dramatic shifts in the dis­
tributions toward values lower than the point estimates. 
For each of the two pathways, the point estimates fall 
at the SSth percentile for benzene and the 91st percentile 
for BaP. These simulations demonstrate the amount of 
conservatism built into the CPFs. 

Finally, Figs. If and 2f show the distributions using 
groups I, II, III, and IV random variables in the simu-
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Table III. Summary Statistics for Distributions Shown in Figures 1 and 2 

Stochastic variable groups: 

Benzene soil ingestion ILCR 

Statistics: 
Poini esiimaie location 

Mean 
Median (exact) 
Mode 

Percentile: 
0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 
55% 
60% 
65% 
70% 
75% 
80% 
85% 
90% 
95% 

100% 

BaP dermal contact ILCR 

Statistics: 
Point estimate location 

Mean 
Median (exact) 
Mode (exact) 

Percentile: 
0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 
55% 
60% 
65% 
70% 
75% 
80% 
85% 
90% 
95% 

100% 

1 

(a) 

50% 
8.51E-10 
8.21E-10 
5.15E-10 

5.15E-10 
6.39E-10 
6.69E-10 
6.95E-10 
7.14E-10 
7.33E-10 
7.51E-10 
7.68E-10 
7.86E-10 
8.03E-10 
8.21E-10 
8.39E-10 
8.60E-10 
8.82E-10 
9.08E-10 
9.34E-10 
9.69E-10 
l .O lE-9 
1.06E-9 
1.16E-9 
3.04E-9 

(a) 

51% 
3.06E-5 
2.94E-5 
7.94E-6 

7.94E-6 
1.80E-5 
2.03E-5 
2.18E-5 
2.32E-5 
2.43E-5 
2.S4E-5 
2.64E-5 
2.74E-5 
2.84E-5 
2.94E-5 
3.05E-5 
3.16E-5 
3.28E-5 
3.40E-5 
3.55E-5 
3.71E-5 
3.93E-5 
4.22E-5 
4 .70E-5 
1.22E-4 

11 

(b) 

69% 
7.61E-10 
5.65E-10 
3.54E-11 

3.54E-11 
1.63E-10 
2.11E-10 
2.55E-10 
2.98E-10 
3.39E-10 
3.78E-10 
4.25E-10 
4.70E-10 
5.14E-10 
5.65E-10 
6.21E-10 
6.84E-10 
7.53E-10 
8.41E-10 
9.51E-10 
1.08E-9 
1.25E-9 
1.52E-9 
2 .03E-9 
l . lOE-8 

(b) 

80% 
2.12E-5 
1.68E-5 
1.25E-6 

1.25E-6 
5.48E-6 
6.95E-6 
8.28E-6 
9.42E-6 
1.06E-5 
1.17E-5 
1.30E-5 
1.41E-5 
1.54E-5 
1.68E-5 
1.83E-5 
2.00E-5 
2 . I8E-5 
2.40E-5 
2.66E-5 
2.96E-5 
3.37E-5 
3.97E-5 
5.16E-5 
2.44E-4 

111 

(c) 

72% 
7.17E-10 
5.16E-10 
3 . 3 4 E - n 

3.34E-11 
1.42E-10 
1.86E-10 
2.23E-10 
2.61E-10 
3.00E-10 
3.38E-10 
3.80E-10 
4.21E-10 
4.68E-10 
5.16E-10 
5.70E-10 
6.32E-10 
6.98E-10 
7.84E-10 
8.93E-10 
1.02E-9 
1.20E-9 
1.47E-9 
1.97E-9 
8.47E-9 

(c) 

94% 
1.50E-5 
1.30E-5 
1.55E-6 

1.55E-6 
5.48E-6 
5.57E-6 
7.60E-6 
8.38E-6 
9.17E-6 
9.91E-6 
1.07E-5 
1.14E-5 
1.22E-5 
1.30E-5 
1.39E-5 
1.49E-5 
1.60E-5 
1.72E-5 
1.85E-5 
2.03E-5 
2.24E-5 
2.56E-5 
3.11E-5 
1.04E-4 

1,11,111 

(d) 

78% 
6.64E-10 
3.58E-10 
6.22E-12 

6.22E-12 
5.45E-11 
8.15E-11 
1.09E-10 
1.37E-10 
1.66E-10 
1.95E-10 
2 .29E-I0 
2.65E-10 
3.07E-I0 
3.58E-10 
4.13E-10 
4 .77E-I0 
5.49E-10 
6 .46E-I0 
7.49E-10 
8.98E-10 
1.12E-9 
1.47E-9 
2.21E-9 
1.95E-8 

(d) 

94% 
I .09E-5 
7.22E-6 
1.90E-7 

I .90E-7 
1.61E-6 
2.24E-6 
2.82E-6 
3.36E-6 
3.90E-6 
4 .48E-6 
5.04E-6 
5.70E-6 
6.40E-6 
7.22E-6 
8.08E-6 
9.07E-6 
1.02E-5 
1.17E-5 
1.35E-5 
1.56E-5 
1.84E-5 
2.31E-5 
3.20E-5 
2.50E-4 

IV 

(e) 

88% 
4.65E-10 
3.67E-10 
2.20E-11 

2.20E-11 
1.22E-10 
1.58E-10 
1.84E-10 
2.10E-10 
2.35E-10 
2.58E-10 
2.85E-10 
3.11E-I0 
3.39E-10 
3.67E-10 
4.01E-10 
4.38E-10 
4.79E-10 
5.29E-10 
5.82E-10 
6.49E-10 
7.35E-10 
8.80E-10 
1.13E-9 
5.14E-9 

(e) 

91% 
2.10E-5 
1.18E-6 
8.44E-I1 

8.44E-1I 
2.37E-8 
5.73E-8 
1.04E-7 
1.64E-7 
2.43E-7 
3.46E-7 
4.78E-7 
6.51E-7 
8.82E-7 
1.18E-6 
1.59E-6 
2.21E-6 
3.02E-6 
4.13E-6 
6.02E-6 
8.81E-6 
1.39E-5 
2.50E-5 
5.98E-5 
1.60E-2 

I,II,1I1,1V 

(0 

90% 
3.74E-10 
I.61E-10 
1.25E-12 

1.25E-I2 
1 .91E-n 
3.05E-11 
4.21E-11 
5.46E-11 
6.78E-1I 
8.21E-11 
9.91E-1I 
1.18E-10 
1.39E-10 
1.61E-10 
1.87E-10 
2.24E-10 
2.65E-10 
3.16E-10 
3.80E-10 
4.76E-10 
6.14E-I0 
8.59E-10 
1.38E-9 
2.29E-8 

(f) 

97% 
7.72E-6 
2.87E-7 
1.13E-11 

1.I3E-11 
4.30E-9 
1.06E-8 
2.01E-8 
3.14E-8 
4.89E-8 
7.19E-8 
1.04E-7 
1.43E-7 
2.05E-7 
2.87E-7 
3.85E-7 
5.33E-7 
7.61E-7 
1.08E-6 
1.59E-6 
2.49E-6 
3.9()E-6 
7.50E-6 
1.88E-5 
1.I9E-2 
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Parametric Distributions for Soil Ingestion by Children 

Kimberly M. Thompson'*^ and David E. Burmaster' 

Received May 4, 1990 

This note presents parameterized distributions of estimates of the amount of soil ingested by 
children based on data collected by Binder et al. (1986). Following discussions with Dr. Binder, 
we modified the Binder study data by using the actual stool weights instead of the 15 g value used 
in the original study. After testing the data for lognormality, we generated parameterized distri­
butions for use in risk assessment uncertainty analyses such as Monie Carlo simulations. 

KEY WORDS: Soil ingestion rates; risk assessment; Monte Carlo simulation, parametric distributions, un­
certainty analysis. 

1. INTRODUCTION 

For use in nsk assessments, several papers present 
empirical data and point estimates of the amount of soil 
ingested by children. In 1987, LaGoy*" presented an 
authoritative review of the studies to date and estimated 
soil ingestion based on age. Although most of the other 
papers present tables of summary statistics and/or his­
tograms that show large variabilities in the results, none 
of the papers present enough information for full quan­
titative uncertainty analysis. To date, no one has pre­
sented parameterized distributions which would be useful 
in Monte Carlo simulations. Using Monte Carlo tech­
niques to estimate both point values and the full distri­
butions of the public health risks for a situation make 
the analyses more informative to risk managers and 
members of the public because they show where the 
point estimate falls within the distribution as well as 
showing the full distributions of risk.'^' However, per­
forming Monte Carlo simulations requires parameterized 
distributions of each of the key input variables. 

Binder et al. performed a "diaper study" in 1986, 
one of the first empirical studies on soil ingestion by chil­
dren.'^' In the study, the children had an average stool 
weight of 7.5 g/day, which was half of what previous 

' Alceon Corporation, P.O. Box2669, Cambndge, Massachusetts 02238. 
^ Current address: Harvard School of Public Health, 665 Huntington 

Ave., Bldg I Rm G13B; Boston, Massachusetts 02115. 
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investigators had measured in other studies.'^'"' Conse­
quently, the authors did not use the actual stool weights 
ofthe children in estimating soil ingestion, but instead used 
15 g/day as the stool weight for every subject, effectively 
doubling their estimates of soil ingestion. 

In September and October of 1986, Calabrese ei 
al.̂ ^^ performed another "diaper study" using 8 trace 
elements (Al, Ba, Mn, Si, Ti, V, Y, and Zr) and a mass-
balance approach to account for trace elements ingested 
in foods and medicines. The authors of that study con­
cluded that not considering ingestion of trace elements 
in food (particularly Ti and Y) elevates estimates of soil 
ingestion by factors of between 2 and 6 depending on 
the trace element. Their findings are consistent with pre­
vious studies by Binder ei al.̂ ^̂  and Clausing et al.̂ ^̂  if 
the previous studies are corrected for trace elements in­
gested in food and medicine. They note that adjusting 
the fecal weights in the Binder et al.'- î study "in retro­
spect based on [their] data was not justified." In a sep­
arate publication, Stanek et al.̂ ^̂  reponed the trace element 
content of the foods and medicines in the Calabrese study; 
however, these data were not reported in such a way that 
distributions could be generated. 

2. METHODS 

To fit a parametric distribution to data for soil 
ingestion by children, we contacted Dr. Binder of the 

0272-4332/91/O6OO.O339$O6 50/1 C 1991 Society for Risk Analysis 
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Fig. 1. Histograms of soil ingestion estimates based on Al, Si, Ti, and AVE (in mg/day). 
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Fig. 2. Histograms and probability plots of soil ingestion estimates based on natural loganthms of Al and Si (in mg/day) 

the distribution and its underlying normal (where the 
underlying normal is found by taking the natural loga­
rithms ofthe data). For the data, the median and standard 
deviation are the two parameters generally used to de­

scribe the distribution (although we also show the anth­
metic mean). For the underlying norma! (the natural 
logarithms of the data), the mean and the standard de­
viation are shown. As discussed in standard text 
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Mathematical Properties of the Risk Equation ' 7 . ^ ^ . 
When Variability is Present f ̂ 1 ] l ^ 
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PO Box 382669 Harvard Square Station 245 Summer Street 
Cambridge, MA 02238-2669 Boston, MA 02210 
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email: deb<3)Alceon.com email: leslie.bloomfield(g)swec.com 

Abstract 

When random variables are used to represent variability, the risk equation has 

mathematical properties poorly understood by many risk assessors. Variability 

represents the heterogeneity in a well-characterized population, usually not 

reducible through further measurement or study. We follow the lead of most 

mathematicians in using random variables to represent and analyze variability. 

To illustrate the issues, we use LogNormal distributions to model variability. 

1.0 Introduction 

When estimating the incremental lifetime cancer risk, R, from an environmental 

exposure to a single carcinogenic chemical via a single exposure pathway, risk ': 

assessors often use equations of this fundamental form: 

R = i#^-^ Eqnl 

where I I indicates a product over the index. In common practice, risk assessors 

use point values (i.e., real numbers) for each variable in Eqn 1. Burmaster and 

Thompson (1995a, b) have discussed the origins and interpretation of Eqn 1 in 

deterministic risk assessments. 

Most risk assessors now agree that all the variables in Eqn 1 contain both 

(i) variability and/or (ii) uncertainty. In this discussion, variability represents the 

heterogeneity in a well-characterized population [and is usually not reducible 

through further measurement or study] while uncertainty represents our-

7 September 1995 1 ©Alceon 
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ignorance about a pooriy-characterized phenomenon or models [and may be 

reducible through further measurement or study]. Thus, variability is a property of 

the natural system under analyst, while uncertainty is a property of the analyst. 

Here, we focus exclusively on variability ~ not because uncertainty is 

unimportant, but because the introduction of variability alone illustrates the main 

mathematical points of this discussion. 

In the probabilistic paradigm, Eqn 1 remains the fundamental equation of risk 

assessment (Burmaster & Thompson, 1995a, b). However, in the fully 

probabilistic framewori<, each of the variables in Eqn 1 is a positive random 

variable represented by a probability density function (PDF) or a cumulative 

distribution function (CDF) (see, e.g.. Feller, 1968 & 1971). To emphasize this 

change in perspective, we re-write Eqn 1 as Eqn 2, with doubly underscored 

symbols to denote that each variable is now a random variable that expresses 

variability in a quantity. We also create Eqns 3 and 4, each an alternative and 

equivalent representation of Eqn 2: 

r t X, 
R = ^ # ^ Eqn 2 

R = f(^.Yj) fori = 1 Iandj = 1 J Eqn 3 

g(Xi) 
= ~ hfY) fori = 1, . . . . I and j = 1, .... J Eqn 4 

In Eqn 4, we use the notation g(^) for the product of random variables in the 

numerator and the notation h(Yj) for the product of random variables in the 

denominator so we can refer to the numerator and denominator separately as 

needed. We will continue to denote real variables (point values) without the 

double underscores. With knowledge of the distributions of all t h e ^ and Yj, an 

analyst can calculate a closed form expression for the distribution ^ in a handful 

of special cases with independent variables (Springer, 1979). In most practical 

cases, including those cases with correlated or jointly distributed random 

variables on the right hand side of the risk equation, the analyst can simulate a 

numerical approximation to the distribution^ (Rubenstein, 1981; Morgan, 1984). 

7 September 1995 2 ©Alceon 



Human and Ecological Risk Assessment 

2.0 Background on Two-Parameter LogNormal Distributions 

LogNormal distributions with two constant parameters play a central role in 

expressing variability in human and ecological risk assessment for at least three 

reasons. First, many physical, chemical, biological, and statistical processes tend 

to create random variables that follow two-parameter LogNormal distributions for 

expressing variability (Hattis & Burmaster, 1994). For example, the physical 

mixing and dilution of one material (say, a miscible or soluble contaminant) into 

another material (say, surface water in a bay) tends to create non equilibrium 

concentrations which are LogNormal in character (Ott, 1990; Ott, 1995). Second, 

when the conditions ofthe Central Limit Theorem hold, the mathematical process 

of multiplying a series of random variables will produce a new random variable 

(the product) which, in the limit, is LogNormal in character, regardless of the 

distributions from which the input variables arise (Benjamin & Cornell, 1970). 

Finally, two-parameter LogNormal distributions are self-replicating under 

multiplication and division, i.e., products and quotients of such LogNormal 

random variables are themselves distributed lognormally (Aitchison & Brown, 

1957; Crow & Shimizu, 1988). All these points apply to Eqns 2, 3, and 4. 

The two-parameter LogNormal distribution expressing variability takes its name 

from the fundamental property that the logarithm ofthe random variable is 

distributed according to a Normal or Gaussian distribution (Evans et al, 1993): 

ln[X] ~ N(^i, a) Eqn 5 

where ln[*] denotes the natural or Napierian logarithm function (base e) and 
N(v •) denotes a Normal or Gaussian distribution with two constant parameters, 
the mean p. and the standard deviation a (with a > 0). In Eqn 5 , ^ is a two-
parameter LogNormal random variable, and ln[X] is a Normal random variable. In 

Eqn 5, n is the mean and c is the standard deviation of the distribution for the 
Normal random variable ln[X], not the LogNormal random variable2<. Many 
people say that Eqn 1 represents the LogNormal random variable^ "in 
logarithmic space." As can be seen in Eqn 5, the random variable ln[X] is 
distributed normally, but the random variable >( is distributed lognormally. 
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The information coded in Eqn 5 is identical to the information coded in Eqn 6: 

X ~ exp[N(^, a) ] Eqn 6 

where exp[*] denotes the exponential function and N(», •) again denotes the same 
Normal or Gaussian distribution with the same two constant parameters, mean p. 
and standard deviation a (with a > 0) as above. In Eqn 6, ̂  is a two-parameter 

LogNormal random variable. As eariier, \i is the mean and a is the standard 

deviation of the Normal random variable ln[X], not the LogNormal random 

variable^. Many people say that Eqn 6 represents the LogNormal random 

variable^ "in linear space." When worthing with Eqn 6 as the representation for a 

LogNormal random variable^, many people refer to N(p., a) as the "underiying 

Normal distribution" or "the Normal distribution in logarithmic space" as a way to 

remember its origins. 

3.0 The Fundamental Risk Equation With All LogNormal Random Variables 

3.1 The General Case 

If all the inputs to the fundamental risk equation, Eqn 2, are independent 

LogNormal random variables ofthe form: 

Xj ~ exp[ N(^ij, aj) ] fori = 1 I Eqn 7 

Yj ~ exp[ N(|ij, oj) ] forj = 1 J Eqn 8 

then the distribution of risk is also a LogNormal random variable of the form: 

R ~ exp[ N(^iR, CR) ] Eqn 9 

with 

M-R = S W - Z îj Eqn 10 

OR = Sqrt [ X a2j -H I a2j ] Eqn 11 
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with the sums over all the indicated indices. As discussed eariier, LogNormal 

distributions are self-replicating under multiplication and division. 

3.2 Working with "High-End" and "Low-End" Values 

In 1992, the US Environmental Protection Agency (US EPA) defined the concept 

of a "high-end" point value for a variable in the numerator of Eqn 2 as a 

deterministic input to an exposure assessment that falls above the 90^^ percentile 

but below the 99.9^^ percentile of the distribution for the particular random 

variable (US EPA, 1992). For a variable in the denominator of Eqn 2, one may 

define a corresponding "low-end" value as falling below the 10*^ percentile but 

not below the 0.1**^ percentile for the particular random variable. 

For simplicity of exposition, let us take the 95'^ percentile as representing a high-
end value and the 5'^ percentile as representing a low-end value of a distribution. 
Let the notations {T}o.95 and {T}o.05 and indicate the 95̂ ^̂  and 5̂ ^ percentiles, 
respectively, of an arbitrary random variable T. 

With this notation, when the standard deviations are roughly similar, the high-end 

value of the numerator of Eqn 4 is considerably smaller than the function of the 

high-end inputs: 

{g(X|)}o.95 < g({Xi}o.95) fori = 1 1 Eqn 12 

Similariy, when the standard deviations are roughly similar, the low-end value of 

the denominator of Eqn 4 is considerably larger than the function of the low-end 

inputs: 

{h(Yj)}o.o5 > h({Yj}o.o5) forj = 1 J Eqn 13 

Overall, this means that the high-end value for risk is much, much smaller than 

the function of the high-end inputs in the numerator and the low-end inputs in the 

denominator when the standard deviations are roughly similar: 
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{R}0.95 « f({^}0.95, ^}0.05) Eqn 14 

fori = 1 I and] = 1, . . . , J ~ 

Most risk assessors now understand this well-documented property of the 

fundamental risk equation, Eqn 2 (Burmaster & Harris, 1993; Bogen, 1994; 

Cullen, 1994). This property ofthe fundamental risk equation does not depend on 

the use of LogNormal distributions as inputs. 

3.2 Working with Arithmetic Means 

Let the notation <T> indicate the arithmetic mean (or expected value) of an 

artjitrary random variable T. For a LogNormal distribution, the arithmetic mean is 

always greater than the median of the distribution by the factor exp[ 0.5 • c ^ j ]. In 

many practical cases, the arithmetic mean of a LogNormal random variable falls 

between the 65̂ ^̂  and the 80'^ percentiles of the distribution. However, in certain 

situations, the arithmetic mean of a LogNormal distribution can exceed the 95*^ 

percentile of that distribution. 

Some mathematical properties hold in this situation. For independent LogNormal 

distributions, the arithmetic average of the numerator in Eqn 4 equals the function 

of the arithmetic averages of the input variables: 

<g(Xj)> = g(<Xj>) fori = 1 I Eqn 15 

Similariy, for independent LogNormal distributions, the arithmetic average of the 

denominator in Eqn 4 equals the function of the arithmetic averages of the input 

variables: 

<h(Yj)> = h(<Yj>) forj = 1 J Eqn 16 

The results in Eqns 15 and 16 are easy to prove for independent LogNormal 

distributions, and the results hold generally for other independent random 

variables from other families of distributions. Some authors use this property as 

the definition of independence between two random variables. 
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However, for independent LogNormal distributions, the arithmetic average of risk 

does not equal the function of the averages of the inputs: 

<^> ^ f(<^>, <Yj>) Eqn 17 

fori = 1, . . . , I and j = 1, . . . , J 

This result in Eqn 17 surprises many people, even though it is easily proved for 

independent LogNormal distributions. It is true for other families of distributions 

as well. 

3.3 Working with Medians 

Let the notation fflo.50 indicate the median or 50*^ percentile of an arbitrary 

random variable T 

Some mathematical properties hold in this situation. For LogNormal distributions, 

the median of the numerator in Eqn 4 equals the function of the medians of the 

input variables: 

{g(Xi)}o.50 = g({Xi}o.5o) fori = 1 I Eqn 18 

and, the median of the denominator in Eqn 4 equals the function of the medians 

of the input variables: 

{h(Yj)}o.50 = h({Yj}o.5o) forj = 1, . . . ,J Eqn 19 

More generally for independent LogNormal distributions, the median risk equals 

the function of the median inputs to Eqn 3: 

{R}0.50 = f({^}0.50, ^}0.50) Eqn 20 

fori = 1 I and j = 1,. . . , J 

Thus, for independent LogNormal distributions, the median of the function for risk 

(in Eqns 2, 3, and 4) is the function of the median inputs. Although this result is 
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not true for independent random variables from other families of distributions, we 

have found it an excellent approximation in many numerical simulations of Eqns 

2, 3, and 4. 

3.4 Working with Mixed Cases 

If we continue to restrict ourselves to independent LogNormal random variables 

as the inputs to the fundamental risk equation, any of Eqns 2, 3, or 4, then: 

• the median of the ̂  is equal to the function of the medians of the inputs; 

• the arithmetic mean of ̂  is NOT equal to the function of the arithmetic 

means of the inputs; and 

• the 95*̂ 1 percentile of ̂  is much smaller than the function of (i) the 95*fi 

percentiles of all the inputs in the numerator and (ii) the 5*̂  percentiles of 

all the inputs in the denominator. 

Thus, as is exactly true for independent LogNormal distributions and as is 

approximately true for other independent random variables with longer tails to the 

right, medians (nfll averages) are "neutral" and "self replicating" when used as 

point value inputs to the fundamental risk equation, Eqn 2. 

Without doing a full calculation or a full simulation, no one can know the 
percentile of R calculated if the inputs to the fundamental risk equation, Eqn 2, 

include a combination of median values, average values, and high- and low-end 

values. 

Restricting ourselves to the case with independent LogNormal distributions, we 

see that: 

• the use of one or more median values in either the numerator or the 
denominator does not shift the estimate of R (further) above or (further) 
below the correct median of ̂ , i.e., median inputs are "neutral" in trying to 
understand where the value R falls as a percentile of the distribution R̂; 
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• the use of one or more average values in the numerator does shift the 
estimate of R above the correct median of ̂ , i.e., average inputs in the 

numerator introduce moderate to large (but unknown) amounts of 
conservatism in trying to understand where the value R falls as a 
percentile of the distribution _R; 

• the use of one or more high-end values in the numerator does shift the 
estimate of R far above the correct median of ̂ , i.e., high-end inputs in the 

numerator introduce large (but unknown) amounts of conservatism in 

trying to understand where the value R falls as a percentile of the 
distribution^; and 

• the use of one or more low-end values in the denominator does shift the 
estimate of R far above the correct median of ̂ , i.e., low-end inputs in the 

denominator also introduce large (but unknown) amounts of conservatism 
in trying to understand where the value R falls as a percentile of the 
distribution^. 

Most risk assessors now understand that the introduction of a few high-end 

values into the numerator or a few low-end values into the denominator of Eqns 1 

or 2 can introduce very large amounts of conservatism into the point estimate R 

(Harris & Burmaster, 1992; Burmaster & Harris, 1993; Bogen, 1994; Cullen, 

1994). 

Fewer people understand that the introduction of several average values in the 

numerator of Eqns 1 or 2 can introduce significant amounts ~ or even very large 

amounts ~ of conservatism into point estimate R. As an extreme example, if the 

arithmetic means of three distributions all exceed the 90^^ percentile of the 

corresponding distribution, the result is obvious. Less obvious, the use of three 

average values as point values for the corresponding LogNormal random 

variables can really be the multiplication of three 75*^ percentiles. If these are the 

only conservative inputs in an equation, these three inputs may multiply to give, 

in effect, a high-end point value for risk. If these three average values for inputs 

in the numerator are combined multiplicatively with three high-end values for 

other inputs in the numerator, the resulting point estimate of risk may be far, far 
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more conservative than understood just from the combination of the three high-

end values along with medians for the other variables. 

4.0 Conclusions 

From this discussion, we draw three main conclusions. 

First, without doing a full calculation or a full simulation, no one can know the 
percentile of R calculated if the inputs to the fundamental risk equation, Eqn 2, 

include a combination of median values, average values, and "high end" values. 

Second, for independent LogNormal random variables -- and for other 

independent random variables from other families of distributions with long tails 

to the right - the use of one or more medians in the numerator or denominator of 

Eqns 2, 3, or 4 for input variables does not introduce any compounding 

conservatisms; in contrast, the use of one or more average values in the 

numerator of those same equations always introduces multiplicative 

conservatisms, usually hidden from view and sometimes numerically large. 

Third, the simultaneous use of several average values in the numerator (for 

distributions with long tails to the right) along with several high-end values in the 

numerator and several low-end values in the denominator can lead to point 

estimates of risk that fall above the range US EPA uses to set policy. 
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Abstract 

In a probabilistic exposure assessment, an analyst must often develop a probability 

distribution to represent a random variable that has a fixed minimum and a fixed 

maximum. This manuscript shows how to fit a two-parameter Beta distribution to a 

sample data set, and then shows how to fit a constrained four-parameter Beta4 

distribution to the same data ~ thereby improving the fit and speeding the simulation by 

a factor of 5. 

1.0 Introduction 

In a probabilistic exposure assessment, an analyst must often develop a probability 

distribution to represent a random variable that has a fixed minimum and a fixed 

maximum. For example, a child may play in a park from 0 to 7 day/week. Similariy, the 

fraction of skin in contact with soils may range from 0 to 1, while the fraction of a nutrient 

or a toxicant absorbed in the gut may range from 0 to 1. 

Beta distributions (of the first kind) (Mood et al, 1974; Evans et al, 1993) have several 

useful properties that an analyst may exploit in a probabilistic exposure assessment. 

First, a two-parameter Beta distribution can assume a wide variety of shapes, 

depending on the values taken by the two parameters. Second, a two-parameter Beta 

variate has a fixed minimum (zero) and a fixed maximum (one). Third, a two-parameter 
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The random variable X has this probability density function (PDF): 

xa-1 . (1 • x)b-l 

P(a, b) 

where the denominator is the beta function, P(a, b) = f u^ '̂' (1-u)b-i du (Abramowitz 

•̂ 0 

& Stegun, 1964). The first two central moments of this distribution are, respectively, its 

expected value and its variance: 

^ f ^ l = (a + b)2% + b + 1) ^"^"^ 

While the Beta distribution is extremely flexible over the support [ 0,1 ] and finds many 

uses in statistics, two of its special properties are key in exposure assessment. First, 

when a > 1 and b > 1, the distribution has one mode: 

Model Kl= ^ f ^ 

Second, Beta variates are much easier and faster to simulate than when a and b are 

integers. [EndNote 2]. Further, the speed of the algorithm commonly used to simulate a 

Beta variate with integer parameters decreases as the sum (a + b) increases (Evans et 

al, 1993). 

Exploratory Data Analvsis: After exploratory data analysis to visualize the pattems in the 

data (Tukey, 1977; Chambers et al, 1983; Cleveland, 1985), we decided to fit a two-

parameter Beta distribution to the data. 
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and these central moments: 

E [ Y ] = C»E[X ] Eqn 9 

V [ Y ] = c2 .V[2( ] Eqmo 

Again, for a > 1 and b > 1, the Beta4 distribution has one mode: 

Mode[Y]= c«Mode[X] + d Eqnii 

Finally, when c = 1 - d and 0 < d < 1, the random variate Y has support [d, 1]. 

Exploratory Data Analysis: After further exploratory data analysis, we decided to fit a 

Beta4 distribution with a and b constrained to integers for speed in simulation. 

Application: First, we fit the Beta4 distribution to the data by maximizing the loglikelihood 

function (Edwards, 1992) in Mathematica™ subject to the constraints: a = 4, b = 1, and 

c = 1 - d. In Figure 2, a solid line depicts the CDF for this fitted Beta4 distribution, Yi ~ 

Beta4[ y l a = 4 , b = 1 , c = 0.397303, d = 0.602697 ], plotted against the empirical 

CDF for the data. The maximum of the loglikelihood function for Yi is 20.24, indicating 

that this constrained four-parameter Beta4 distribution fits the data better than the best 

two-parameter Beta distribution. For comparison, the dashed line in Figure 2 depicts the 

CDF for X2. 

5.0 Discussion 

Figure 3 shows the excellent correspondence between the best-fit two-parameter Beta 

distribution and the best-fit constrained four-parameter Beta4 distribution as a QQ-plot 
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The random variable X has this probability density function (PDF): 
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P(a, b) 
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Jo 
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or a toxicant absorbed in the gut may range from 0 to 1. 

Beta distributions (of the first kind) (Mood et al, 1974; Evans et al, 1993) have several 

useful properties that an analyst may exploit in a probabilistic exposure assessment. 

First, a two-parameter Beta distribution can assume a wide variety of shapes, 

depending on the values taken by the two parameters. Second, a two-parameter Beta 

variate has a fixed minimum (zero) and a fixed maximum (one). Third, a two-parameter 
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Beta distribution can be scaled and translated, thereby creating the four-parameter 

Beta4 distribution (of the first kind). Finally, the method of Maximum Likelihood (Mood et 

al, 1974; Edwards, 1992) is a powerful way to fit either the two-parameter Beta 

distribution or the four-parameter Beta4 distribution to measured data. [EndNote 1]. 

Overall, the two-parameter Beta distribution and the four-parameter Beta4 distribution 

have many potential uses in probabilistic exposure assessments. This manuscript first 

shows how to fit a two-parameter Beta distribution to a sample data set, and then it 

shows how fit a four-parameter Beta4 distribution to the same data. 

2.0 Data for the Sample Problem 

To illustrate the techniques, we analyze some of the data reported in a recent 

manuscript (Magee et al, 1996; Table 1) in which the authors compiled 13 

measurements of the absorption of polycyclic aromatic hydrocarbons from food in the 

guts of rats, hamsters, or humans. All the measurements fall between 0.7 and 1: 0.921, 

0.89, 0.988, 0.887, 0.996, 0.967, 0.98, 0.87, 0.869, 0.94, 0.75, 0.97, and 0.938. In this 

manuscript, we accept these values as bona fide measurements of a phenomenon 

exhibiting considerable variability. 

3.0 The Two-Parameter Beta Distribution 

Theory: A Beta distribution (of the first kind) with two parameters, a > 0 and b > 0, 

describes the random variable X over the support 0 < x < 1: (Mood et al, 1974; Evans et 

al, 1993): 

X ~ Beta[ X1 a, b ] ; x e [ 0, 1 ] Eqnl 

27 May 1996 2 © 1996 Alceon 



submitted to Risk Analysis 

The random variable X has this probability density function (PDF): 

xa-1 . (1 - x)b-i 
fx(x) = I ' Eqn 2 

p(a, b) 

where the denominator is the beta function, (5(a, b) = [ u^-i (1-u)t»-i du (Abramowitz 

•̂ 0 

& Stegun, 1964). The first two central moments of this distribution are, respectively, its 

expected value and its variance: 

^ f ^ l = (a-Hb)2%-Hb-Hl) ^^"^ 

While the Beta distribution is extremely flexible over the support [ 0, 1 ] and finds many 

uses in statistics, two of its special properties are key in exposure assessment. First, 

when a > 1 and b > 1, the distribution has one mode: 

ModeUl= - ^ ^ 

Second, Beta variates are much easier and faster to simulate than when a and b are 

integers. [EndNote 2]. Further, the speed of the algorithm commonly used to simulate a 

Beta variate with integer parameters decreases as the sum (a + b) increases (Evans et 

al, 1993). 

Exploraton/ Data Analysis: After exploratory data analysis to visualize the pattems in the 

data (Tukey, 1977; Chambers et al, 1983; Cleveland, 1985), we decided to fit a two-

parameter Beta distribution to the data. 
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Application: We fit the Beta distribution to the data by maximizing the loglikelihood 

function (Edwards, 1992) in Mathematica™ (Wolfram, 1991; Wickham-Jones, 1994). In 

Figure 1, the solid line depicts the cumulative distribution function (CDF) for the best-fit 

distribution with noninteger parameters: Xi ~ Beta[ x I a = 13.7035, b = 1.17996 ]; and 

the dashed line depicts the CDF for the best-fit distribution with small integer 

parameters: X2 - Beta[ x I a = 14, b = 1 ]. The maxima of the loglikelihood functions for 

distributions Xi and X2 are 20.18 and 19.85, respectively. At this point, we have an 

excellent fit with noninteger parameters and an adequate fit with integer parameters. 

4.0 The Four-Parameter Beta Distribution 

Theory: A Beta4 distribution (of the first kind) with four parameters, a > 0, b > 0, c > 0, 

and d > 0 describes the random variable Y over the support d < y < (c-nd): (Mood et al, 

1974; Evans etal, 1993) 

Y ~ Beta4[ y I a, b, c, d ] ; y e [ d, c -H d ] Eqn 6 

This distribution arises from and can be simulated as a scaled and translated two-

parameter Beta distribution: 

Y = C ' X - H d ; y e [ d , c - i - d ] Eqn 7 

The random variable Y has this PDF: 

v - d 
My) = f x ( ^ ^ r - ) Eqn 8 
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and these central moments: 

E [ Y ] = C - E [ X ] Eqn 9 

V [ Y ] = c 2 . V [ X ] Eqmo 

Again, for a > 1 and b > 1, the Beta4 distribution has one mode: 

Mode[ Y ] = c • Mode[ X ] -i- d Eqn 11 

Finally, when c = 1 - d and 0 < d < 1, the random variate Y has support [d, 1 ]. 

Exploratory Data Analysis: After further exploratory data analysis, we decided to fit a 

Beta4 distribution with a and b constrained to integers for speed in simulation. 

Application: First, we fit the Beta4 distribution to the data by maximizing the loglikelihood 

function (Edwards, 1992) in Mathematica™ subject to the constraints: a = 4, b = 1, and 

c = 1 - d. In Figure 2, a solid line depicts the CDF for this fitted Beta4 distribution, Yi ~ 

Beta4[ y l a = 4 , b = 1 , c = 0.397303, d = 0.602697 ], plotted against the empirical 

CDF for the data. The maximum of the loglikelihood function for Yi is 20.24, indicating 

that this constrained four-parameter Beta4 distribution fits the data better than the best 

two-parameter Beta distribution. For comparison, the dashed line in Figure 2 depicts the 

CDF for X2. 

5.0 Discussion 

Figure 3 shows the excellent correspondence between the best-fit two-parameter Beta 

distribution and the best-fit constrained four-parameter Beta4 distribution as a QQ-plot 
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(Chambers et al, 1983) for 100 realizations from Yi and X i . In this figure, the diagonal 

line shows the locus of perfect match. In this application, it is inconsequential that Xi 

and Yi diverge at the low extreme of the distribution (i.e., Xi will generate values 

smaller than d = 0.602697 less than one percent of the time but Yi will never generate a 

value smaller than d). 

While it is not surprising that an unconstrained four-parameter distribution can fit the 

data better than a two-parameter distribution, it is pleasing to note that Yi (constrained, 

then optimized) fits the data better than Xi (unconstrained, optimized) as seen by 

comparing the maxima of the loglikelihood functions. Not only does Yi fit the data better 

than X i , Mathematical^, for example, simulates Yi some 5 times faster than it 

simulates X i . Further, Yi has integer values for parameters a and b, so many popular 

Monte Cario simulation programs that cannot simulate Xi can simulate Yi . 

EndNotes 

1. The analyst can use the "profile likelihood method" (Edwards, 1992) to find joint confidence 
regions for the parameters. 

2. Most popular software packages accept only integer parameters. 
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